首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Apollo 17 KREEPy basalt is a unique lunar volcanic rock, observed only as clasts in the light friable breccia matrix (72275) of Boulder 1, Station 2 at Taurus-Littrow. Its status as a volcanic rock is confirmed by the absence of any meteoritic contamination, a lack of cognate inclusions or xenocrystal material, and low Ni contents in metal grains.The basalt was extruded 4.01 ± 0.04 b.y. ago, approximately contemporaneously with the high-alumina mare basalts at Fra Mauro; shortly afterwards it was disrupted, probably by the Serenitatis impact, and its fragments emplaced in the South Massif. The basalt, which is quartz-normative and aluminous, is chemically and mineralogically intermediate between the Apollo 15 KREEP basalts and the high-alumina mare basalts in most respects. It consists mainly of plagioclase and pigeonitic pyroxene in approximately equal amounts, and 10–30% of mesostatis. Minor phases outside of the mesostatis are chromite, a silica mineral, Fe-metal, and rare olivine; the mesostatis consists primarily of ilmenite, Fe-metal, troilite, and ferroaugite, set in a glassy or microcrystalline Si-rich base.Chemical and isotopic data indicate that an origin by partial melting of a distinct source region is more probable than hybridization or contamination of magmas, and is responsible for the transitional composition of the basalt. The moon did not produce two completely distinct volcanic groups, the KREEP basalts and the mare/mare-like basalts; some intermediate rock types were generated as well. A corresponding spectrum of source regions must exist in the interior of the moon.  相似文献   

2.
A total of 139 breccia and crystalline rock fragments in the size range 2–4 mm from four Apollo 15 soil samples have been examined. Two of the sample stations are on the mare surface (4 and 9A) and two are on the Apennine Front (2 and 6). Approximately 90% of the fragments from the Apennine Front are brown-glass “soil” breccias, but those from the mare surface are 60%–70% basalt. Several textural varieties of mare basalt have been recognized, but within experimental error there is no difference in their40Ar-39Ar ages. The major non-mare (Pre-Imbrian) crystalline rock types in the Apennine Front regolith are KREEP basalt, anorthositic rocks, recrystallized norite (including anorthositic norite) and recrystallized polymict breccias; however, such crystalline rocks are rare in the samples examined. Apparently, the near surface Imbrium ejecta below the regolith has not been thermally recrystallized, and probably there are no outcrops of crystalline rocks upslope from the sample stations.  相似文献   

3.
Eight of eleven Apollo 16 rake-sample anorthosites are very similar to each other, to hand-specimen Apollo 16 anorthosites, and to Apollo 15 anorthosites. They have feldspar An96.6, both high- and low-Ca pyroxene with a restricted range of (low-magnesium) composition, minor olivine (~ Fo60), traces of ilmenite and chromite, and originally coarse-grained, but now cataclastic texture. Such ferroan anorthosite is evidently a coherent, distinctive and widespread lunar rock type of cumulate origin which may not necessarily be very closely related genetically to other highland rock types.  相似文献   

4.
The crystallisation of olivine (O) and silica (S) normative varieties of Apollo 11 crystalline rocks has been followed at 1 atm. The sequence of phases precipitating is (S): spinel, olivine, ilmenite, clinopyroxene plus plagioclase; and (O): spinel, olivine, ilmenite plus plagioclase, clinopyroxene. The last 50% (O) to 75% (S) of the liquid crystallises as a pyroxene-plagioclase-ilmenite cotectic over a narrow temperature range, approximately 1095 to 1125° C, leaving a small silica-rich residue.  相似文献   

5.
Olivine clasts, which have mantles formed by reaction of the olivine with the breccia matrix, are present in the high-grade thermally metamorphosed Apollo 14 breccias. The mantled olivine clasts are most abundant in 14311, but they are also present in 14304 and 14319. Typically the mantles consist of two zones: an inner corona containing pyroxene, ilmenite and commonly plagioclase, and an outer light-colored halo where the matrix is depleted in ilmenite. The growth of the coronas involved matrix-to-corona diffusion of TiO2 and corona-to-matrix diffusion of MgO and FeO. These diffusive fluxes can be attributed to chemical potential gradients developed between mineral assemblages in local equilibrium at the olivine-corona boundary and the matrix.  相似文献   

6.
Bulk compositions of igneous and microbreccia lithic fragments, glasses, and chondrules from Luna 16 fines as well as compositions of minerals in basaltic lithic fragments were determined with the electron microprobe. Igneous lithic fragments and glasses are divided into two groups, the anorthositic-noritic-troctolitic (hereafter referred to as ANT) and basaltic groups. Chondrules are always of ANT composition and microbreccia lithic fragments are divided into groups 1 and 2. The conclusions reached may be summarized as follows: (1) Luna 16 fines are more similar in composition to Apollo 11 than to Apollo 12 and 14 materials (e.g. Apollo 11 igneous lithic fragments and glasses fall into similar ANT and basaltic groups; abundant norites in Luna 16 and Apollo 11 are not KREEP as in Apollo 12 and 14; Luna 16 basaltic lithic fragments may represent high-K and low-K suites as is the case for Apollo 11; rare colorless to greenish, FeO-rich and TiO2-poor glasses were found in both Apollo 11 and Luna 16; Luna 16 spinels are similar to Apollo 11 spinels but unlike those from Apollo 12). (2) No difference was noted in the composition of lithic fragments, glasses and chondrules from Luna 16 core tube layers A and D. (3) Microbreccia lithic fragments of group 1 originated locally by mixing of high proportions of basaltic with small proportions of ANT materials. (4) Glasses are the compositional analogs to the lithic fragments and not to the microbreccias; most glasses were produced directly from igneous rocks. (5) Glasses show partial loss of Na and K due to vaporization in the vitrification process. (6) Luna 16 chondrules have ANT but not basaltic composition. It is suggested that either liquid droplets of ANT composition are more apt to nucleate from the supercooled state; or basaltic droplets have largely been formed in small and ANT droplets in large impact events (in the latter case, probability for homogeneous and inhomogeneous nucleation is larger. (7) No evidence for ferric iron and water-bearing minerals was found. (8) Occurrence of a great variety of igneous rocks in Luna 16 samples (anorthosite, noritic anorthosite, anorthositic norite, olivine norite, troctolite, and basalt) confirm our earlier conclusion that large-scale melting or partial melting to considerable depth and extensive igneous differentiation must have occurred on the moon.  相似文献   

7.
Harrat Al-Birk volcanics are products of the Red Sea rift in southwest Saudi Arabia that started in the Tertiary and reached its climax at ~ 5 Ma.This volcanic field is almost monotonous and is dominated by basalts that include mafic-ultramafic mantle xenoliths(gabbro,websterite,and garnet-clinopyroxenite).The present work presents the first detailed petrographic and geochemical notes about the basalts.They comprise vesicular basalt,porphyritic basalt,and flow-textured basalt,in addition to red and black scoria.Geochemically,the volcanic rock varieties of the Harrat Al-Birk are low- to medium-Ti,sodic-alkaline olivine basalts with an enriched oceanic island signature but extruded in a within-plate environment.There is evidence of formation by partial melting with a sort of crystal fractionation dominated by clinopyroxene and Fe-Ti oxides.The latter have abundant titanomagnetite and lesser ilmenite.There is a remarkable enrichment of light rare earth elements and depletion in Ba,Th and K,Ta,and Ti.The geochemical data in this work suggest Harrat Al-Birk basalts represent products of watersaturated melt that was silica undersaturated.This melt was brought to the surface through partial melting of asthenospheric upper mantle that produced enriched oceanic island basalts.Such partial melting is the result of subducted continental mantle lithosphere with considerable mantle metasomatism of subducted oceanic lithosphere that might contain hydrous phases in its peridotites.The fractional crystallization process was controlled by significant separation of clinopyroxene followed by amphiboles and Fe-Ti oxides,particularly ilmenite.Accordingly,the Harrat Al-Birk alkali basalts underwent crystal fractionation that is completely absent in the exotic mantle xenoliths(e.g.Nemeth et al.in The Pleistocene Jabal Akwa A1 Yamaniah maar/tuff ring-scoria cone complex as an analogy for future phreatomagmatic to magmatic explosive eruption scenarios in the Jizan Region,SW Saudi Arabia 2014).  相似文献   

8.
Apollo 15 breccia 15427 and soils 15101, 15261 and 15301 contain abundant spheres and fragments of a green glass that is remarkably constant in composition. The glass is rich in Fe and Mg, and low in Ti, unlike any known lunar basalt, and may be derived from material of pyroxenitic composition in the Apennine Front.  相似文献   

9.
The crystallization ages of a suite of Apollo 17 basalts from four different stations have been measured using the39Ar-40Ar stepwise heating technique. The rocks analyzed include all principal petrographic types found at Apollo 17 landing site. A correlation between the ages and the petrographic type exists; plagioclase-poikilitic ilmenite basalts are youngest and olivine porphyritic ilmenite basalts are the oldest. The duration of volcanism in Mare Serenitatis is about 200 m.y., the same as observed for Mare Imbrium, and less than observed for Mare Tranquillitatis, 400 m.y. A relationship between duration of volcanism and gravity anomalies is noted. The cosmic ray exposure ages (in m.y.) for various locations range as: station 4, 58–315; station 5, 85–440; station 6, 110; station 8, 90–160.  相似文献   

10.
The concept that the plutonism of the lunar highlands and the mare-type volcanism are two separate problems in both time (> 4.4 AE versus < 3.95 AE) and space is seriously questioned by the discovery of a 4.23-AE low-Ti mare basalt from Fra Mauro Formation.Apollo 14 breccia 14305 contains a clast (,122) which is an olivine gabbronorite that is texturally and mineralogically similar to several Apollo 12 basalts (e.g., 12005, 12035, 12040). It consists of cumulus olivine (40 modal %; Fo 62–70) and Ti-chromite (2.5 modal %); post-cumulus phases include low-Ca pyroxene (29 modal %; Wo 7–13 En 68–75), augite (10 modal %; Wo 31–40 En 47–50), plagioclase (15 modal %, An 82–93), and ilmenite (4 modal %, 5–7 MgO). The TiO2 content of this rock = 4.3%; CaO/Al2O3 ? 1.0, CaO = 5.1%; MgO/FeO ? 1.0, MgO = 21.9%. The REE pattern, normalized to chondritic abundances, is approximately 30 × Ch and “hump-shaped” with a pronounced Eu depletion and a non-KREEPy signature. A four-point Rb-Sr isochron reveals an age of 4.23 ± 0.05 AE. The sample has a low initial 87Sr/86Sr= 0.69911 ± 3.The data presented here show that non-KREEPy, mare-type volcanism commenced at least as early as 4.2 AE in the Fra Mauro region and probably across much of the lunar surface. Massive bombardment during the “terminal cataclysm” and the subsequent veneer of younger mare basalts has obliturated most of the evidence for these ancient volcanic events. These old, mare-type volcanics may be related to basin-forming events such as made Procellarum (i.e., impact-triggered igneous activity).  相似文献   

11.
 On King George Island during latest Oligocene/earliest Miocene time, submarine eruptions resulted in the emplacement of a small (ca. 500 m estimated original diameter) basalt lava dome at Low Head. The dome contains a central mass of columnar rock enveloped by fractured basalt and basalt breccia. The breccia is crystalline and is a joint-block deposit (lithic orthobreccia) interpreted as an unusually thick dome carapace breccia cogenetic with the columnar rock. It was formed in situ by a combination of intense dilation, fracturing and shattering caused by natural hydrofracturing during initial dome effusion and subsequent endogenous emplacement of further basalt melt, now preserved as the columnar rock. Muddy matrix with dispersed hyaloclastite and microfossils fills fractures and diffuse patches in part of the fractured basalt and breccia lithofacies. The sparse glass-rich clasts formed by cooling-contraction granulation during interaction between chilled basalt crust and surrounding water. Together with muddy sediment, they were injected into the dome by hydrofracturing, local steam fluidisation and likely explosive bulk interaction. The basalt lava was highly crystallised and degassed prior to extrusion. Together with a low effusion temperature and rapid convective heat loss in a submarine setting, these properties significantly affected the magma rheology (increased the viscosity and shear strength) and influenced the final dome-like form of the extrusion. Conversely, high heat retention was favoured by the degassed state of the magma (minimal undercooling), a thick breccia carapace and viscous shear heating, which helped to sustain magmatic (eruption) temperatures and enhanced the mobility of the flow. Received: 1 August 1996 / Accepted: 15 September 1997  相似文献   

12.
In order to reconstruct the architectural evolution of a fault zone with heterogeneous structures, we studied the Atera Fault in Central Japan, and described the detailed mesoscopic and microscopic features of the zone. The fault zone studied consists of a 1.2‐m wide fault core of fault breccia mixed with fragments derived from welded tuff, granite, and mafic volcanic rocks. The 1.2‐m wide fault core is bordered by a western damage zone characterized by a welded tuff fault breccia and an eastern damage zone characterized by a granite cataclasite. A secondary fault core, a 30‐cm wide granite‐derived fault gouge, cross‐cuts the granite cataclasite. Although welded tuff fault breccia and granite cataclasite are also pervasively fractured and fragmented, the fault cores are significantly affected by fragment size reduction due to intense abrasive wear and comminution. The 1.2‐m wide fault core includes fragments and a sharp dark layer composed of mafic volcanic rocks, which can be correlated with neighboring 1.6 Ma volcanic rocks. This observation places a younger constraint on the age of the fault core formation. Carbonate coating on basalt fragments in the 1.2‐m wide fault core has also been fractured indicating the repetition of intense fragmentation. Bifurcated, black and gray veins near the 1.2‐m wide fault core are likely injection veins, formed by the rapid injection of fine material within fault zones during seismic events. The granite‐derived fault gouge, characterized by hard granite fragments without intense brecciation and microfracturing, in a kaolinite‐rich clay matrix, is interpreted as the most recent slip zone within the exposed fault zone. A preview of published geological and hydrological studies of several fault zones shows that clay‐rich fault cores can exhibit much lower permeability than the adjacent damage zones represented in this present case by the welded tuff fault breccia and granite cataclasite.  相似文献   

13.
Pristine granite clasts in Apollo-14 breccias 14321 and 14303 have estimated masses of 1.8 and 0.17 g, respectively. The 14321 clast is ~ 60% K-feldspar and 40% quartz, with traces of extremely Mg-poor mafic silicates and ilmenite. The 14303 clast is roughly 33% plagioclase, 32% K-feldspar, 23% quartz, 11% pyroxene, and 1% ilmenite; pyroxene and ilmenite are moderately Mg-rich; plagioclase and pyroxene are strongly zoned. Both clasts are severely brecciated, but monomict (pristine). Both have abundant graphic intergrowths of K-feldspar with quartz. Unlike the majority of similar Earth rocks, both clasts are devoid of hydrous phases. The bulk composition of the 14321 clast is similar to those of several other lunar granitic samples, but the 14303 clast is unique: it bears as close a resemblance to KREEP as it does to other lunar granites. Silicate liquid immiscibility may explain why the granites are low in REE relative to KREEP.  相似文献   

14.
KREEP-rich poikilitic impact melt rocks 65777,11, 65015,88, and 62235,66 are the only mafic impact melt rocks from Cayley Plains stations, Apollo 16, from which areas of subophitic texture can be reported.The bulk chemistry of these unique subophitic areas and the surrounding poikilitic matrices, as well as mineral compositions (olivine, plagioclase, pyroxene, Fe-Ni metal) were determined by electron microprobe analysis. All subophitic areas could be undoubtedly identified as impact melt rockclasts. Inclusion 65777,11 II is of uniquely KREEP-rich composition, 62235,66 II can be classified as anorthositic. Therefore our attempt to identify pristine volcanic basement rocks of the Cayley regions among these inclusions of basaltic texture failed.However, the absence of pristine volcanic target rock fragments and the existence of KREEP-rich and anorthositic impact melt clasts in KREEP-rich impact melt rocks from Cayley Plains favors the theory that the Cayley Plains formation is part of the ejecta blanket from a large basin-type impact crater (Imbrium?), which is underlain by anorthositic material (Nectaris ejecta?), and has been reworked by local impacts in post-Imbrian times.  相似文献   

15.
月球表层及月壳物质密度分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
杜劲松  陈超  梁青  周聪 《地球物理学报》2010,53(9):2059-2067
月球表层与月壳岩石密度的横向与径向的变化,反映了月表及内部成分以及月球演化等特征.本文利用月球勘探者号伽马射线谱仪探测的月表Fe, Th与Mg元素分布数据,依据前人给出的元素含量与岩石类型的关系,对月球表层进行了岩性填图,并结合岩石样品与陨石的密度测试数据建立初始密度模型,采用铁元素与岩石密度的关系对其进行修正,从而建立了月表物质密度分布模型.基于嫦娥一号激光测高数据和日本SELENE计划发布的月球重力模型,计算出月球布格重力异常,进而反演得到月壳0~40 km深度范围内岩石平均密度分布模型.分析表明,大部分区域上,月壳至少月壳上部岩石成分主要以轻质的富含铝、钙、镁质的硅酸盐类岩石为主.由此推测,原始月壳极有可能是由轻质的、富含钙、镁质硅酸盐类岩石构成的全球性月壳.现今的玄武岩与克里普岩只是覆盖于原始的月壳之上的岩层,且厚度不大.  相似文献   

16.
Gabbro — quartz diorite inclusions, angular to rounded and up to 20 cm in size, have been found as accidental fragments in a mud flow of the Okata basalt group, O-shima Island and in a tuff breccia, Hakone. New analyses are represented for seventeen inclusions and three pyroxenes. It is reasonable to conclude from petrographic and chemical features that the olivine gabbro inclusions were produced by crystal settling from a quartztholeiite magma at the early stage of fractionation within a magma reservior. On the other hand, gabbro and quartz gabbro inclusions are fragments of a small intrusive body within the Tertiary volcanic formation and consist of various amounts of cumulus phases and liquid. Quartz diorite inclusions are also fragments of a plutonic equivalent, but represents a strongly-differentiated liquid phase of the quartz-tholeiite magma.  相似文献   

17.
We report Sr, Nd, and Sm isotopic studies of lunar basalt 12038, one of the so-called aluminous mare basalts. A precise internal Rb-Sr isochron yields a crystallization age of 3.35±0.09 AE and initial87Sr/86Sr=0.69922?2 (2σ error limits, 1AE=109 years, λ(87Rb)=0.0139AE?1). An internal Sm-Nd isochron yields an age of 3.28±0.23AE and initial143Nd/144Nd=0.50764?28. Present-day143Nd/144Nd is less than the “chondritic” value, i.e. ?(Nd, 0)=?2.3±0.4 where ?(Nd) is the deviation of143Nd/144Nd from chondritic evolution, expressed as parts in 104. At the time of crystallization ?(Nd, 3.2AE)=1.5±0.6.We have successfully modeled the evolution of the Sr and Nd isotopic compositions and the REE abundances within the framework of our earlier model for Apollo 12 olivine-pigeonite and ilmenite basalts. The isotopic and trace element features of 12038 can be modeled as produced by partial melting of a cumulate mantle source which crystallized from a lunar magma ocean with a chondrite-normalized REE pattern of constant negative slope. Chondrite-normalized La/Yb=2.2 for this hypothetical magma ocean pattern. A plot of I(Sr) versus ?(Nd) for the Apollo 12 basalts clearly shows the influence of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase in the basalt source regions. A small percentage of plagioclase (~5%) in the 12038 source apparently is responsible for low I(Sr) and ?(Nd) in this basalt. Aluminous mare basalts from Mare Crisium (Luna 24) and by inference Mare Fecunditatis (Luna 16) occupy locations on the I(Sr)-?(Nd) plot similar to that of 12038, implying that some basalts from three widely separated lunar regions came from plagioclase-bearing source regions. A summary of model calculations for mare basalts shows a record of lunar mantle solidification during the period when REE abundances in the lunar magma ocean increased from ~20× chondritic to >100× chondritic. Although there is a general trend from olivine to clinopyroxene-dominated source regions with progressive magma ocean evolution, significant mineralogical heterogeneities in mantle composition apparently formed at any given stage of evolution, as evidenced in particular by the three Apollo 12 magma types.  相似文献   

18.
Boninites are widely distributed along the western margin of the Pacific Plate extruded during the incipient stage of the subduction zone development in the early Paleogene period. This paper discusses the genetic relationships of boninite and antecedent protoarc basalt magmas and demonstrates their recycled ancient slab origin based on the T–P conditions and Pb–Hf–Nd–Os isotopic modeling. Primitive melt inclusions in chrome spinel from Ogasawara and Guam islands show severely depleted high‐SiO2, MgO (high‐silica) and less depleted low‐SiO2, MgO (low‐silica and ultralow‐silica) boninitic compositions. The genetic conditions of 1 346 °C at 0.58 GPa and 1 292 °C at 0.69 GPa for the low‐ and ultralow‐silica boninite magmas lie on adiabatic melting paths of depleted mid‐ocean ridge basalt mantle with a potential temperature of 1 430 °C in Ogasawara and of 1 370 °C in Guam, respectively. This is consistent with the model that the low‐ and ultralow‐silica boninites were produced by remelting of the residue of the protoarc basalt during the forearc spreading immediately following the subduction initiation. In contrast, the genetic conditions of 1 428 °C and 0.96 GPa for the high‐silica boninite magma is reconciled with the ascent of more depleted harzburgitic source which pre‐existed below the Izu–Ogasawara–Mariana forearc region before the subduction started. Mixing calculations based on the Pb–Nd–Hf isotopic data for the Mariana protoarc basalt and boninites support the above remelting model for the (ultra)low‐silica boninite and the discrete harzburgite source for the high‐silica boninite. Yb–Os isotopic modeling of the high‐Si boninite source indicates 18–30 wt% melting of the primitive upper mantle at 1.5–1.7 Ga, whereas the source mantle of the protoarc basalt, the residue of which became the source of the (ultra)low‐Si boninite, experienced only 3.5–4.0 wt% melt depletion at 3.6–3.1 Ga, much earlier than the average depleted mid‐ocean ridge basalt mantle with similar degrees of melt depletion at 2.6–2.2 Ga.  相似文献   

19.
New Sr and Pb isotope data are presented for a selection of lavas and associated coarse-grained blocks from Ascension Island. K-Ar dates for the lavas range up to1.5±0.2Ma. Initial87Sr/86Sr ratios are consistent with earlier measurements and for most rocks are ca. 0.7029, but range up to 0.7135 in the case of the most evolved lavas and blocks. Pb isotope data are also consistent with earlier measurements, but the Pb in two gabbroic blocks is less radiogenic than Pb in the other rocks. It is suggested that these gabbroic blocks crystallized from a magma of tholeiitic composition whose source was similar to that of mid-oceanic ridge basalt whereas the lavas and other blocks crystallized from mildly alkaline magmas derived from a source further from the crest of the Mid-Atlantic Ridge. The high87Sr/86Sr ratios result from contamination of the most silicic magma by radiogenic Sr from pelagic sediments. These data and their interpretation are consistent with the petrological and geochemical observations that the granite blocks are the coarse-grained equivalents of the volcanic suite [11] and not fragments of relict continental material [2,3].  相似文献   

20.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号