首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lamellar inclusions of chromian spinel (Cr/Cr + Al> 0.7), clinopyroxene and chromian spinel-clinopyroxene symplectite occur in olivines from alpine-type peridotites which have equilibrated at relatively low temperature (<700°C). They occur most commonly in dunite with very magnesian olivine (Fo93 to Fo95) and discrete grains of Cr-rich spinel. Olivine which initially equilibrated with magnesian and Cr-rich liquid had contained small amounts of calcium and trivalent chromium in the octahedral site, and lamellar chromian spinel and diopsidic clinopyroxene exsolved during the annealing process. The ordinary depletion of chromium or absence of chromian spinel lamellae in olivines in igneous rocks may be partly due to the effective exclusion of chromium from olivine upon cooling.  相似文献   

2.
Chondrules are the major high temperature components of chondritic meteorites which accreted a few millions years after the oldest solids of the solar system, the calcium–aluminum-rich inclusions, were condensed from the nebula gas. Chondrules formed during brief heating events by incomplete melting of solid dust precursors in the protoplanetary disk. Petrographic, compositional and isotopic arguments allowed the identification of metal-bearing Mg-rich olivine aggregates among the precursors of magnesian type I chondrules. Two very different settings can be considered for the formation of these Mg-rich olivines: either a nebular setting corresponding mostly to condensation–evaporation processes in the nebular gas or a planetary setting corresponding mostly to differentiation processes in a planetesimal. An ion microprobe survey of Mg-rich olivines of a set of type I chondrules and isolated olivines from unequilibrated ordinary chondrites and carbonaceous chondrites revealed the existence of several modes in the distribution of the ?17O values and the presence of a large range of mass fractionation (several ‰) within each mode. The chemistry and the oxygen isotopic compositions indicate that Mg-rich olivines are unlikely to be of nebular origin (i.e., solar nebula condensates) but are more likely debris of broken differentiated planetesimals (each of them being characterized by a given ?17O). Mg-rich olivines could have crystallized from magma ocean-like environments on partially molten planetesimals undergoing metal–silicate differentiation processes. Considering the very old age of chondrules, Mg-rich olivine grains or aggregates might be considered as millimeter-sized fragments from disrupted first-generation differentiated planetesimals. Finally, the finding of only a small number of discrete ?17O modes for Mg-rich olivines grains or aggregates in a given chondrite suggests that these shattered fragments have not been efficiently mixed in the disk and/or that chondrite formation occurred in the first vicinity of the breakup of these planetary bodies.  相似文献   

3.
The compositions of liquidus olivines and orthopyroxenes of natural specimens of spinifex- and quench-textured peridotitic komatiites from the Belingwe Greenstone Belt, Rhodesia have been determined for pressures between 10 and 40 kbars. In conjunction with the chemical variation exhibited by these peridotitic komatiites it is concluded that the more magnesian lavas cannot be derived by concentration of olivine phenocrysts, fractional crystallisation or equilibrium partial melting. The peridotitic komatiites could evolve by polybaric assimilation and complete melting of garnet lherzolite into an initial liquid containing about 24% MgO.  相似文献   

4.
This paper reports the first Raman study of a representative set of interplanetary dust particles (IDPs) belonging to different infrared spectral classes. Six different groups of Raman spectra can be discerned among the 20 IDPs studied. All particles, except the four belonging to group 6, exhibit the Raman signature of poorly crystallized carbonaceous material. The degree of “disorder” of this material, as evidenced by the width and relative strength of the two first-order Raman bands at 1360 relative cm−1 and 1600 relative cm−1, varies among particles from different spectral groups (increasing from group 1 to group 5). The most ordered carbonaceous material, with an estimated upper crystallite size limit of 60Å(group 1), is found in particles that tend to show deuterium depletions and that have infrared spectra characteristic of olivines. Raman spectra of particles belonging to groups 2, 3 and 4 (none of which have FTIR spectra characteristic of olivines) show clear evidence for the presence of carbonaceous material, although the “degree of order” is noticeably less than for carbons in group 1 particles. All seven particles with documented deuterium enrichments [1,2] fall into these three intermediate Raman groups. This relationship of the hydrogen isotopic compositions with the Raman data suggests different carbonaceous carrier phases for deuterium depletions and enrichments. Particles from Raman groups 5 and 6, whose spectra show little or no evidence for the presence of carbonaceous material, show deuterium abundances within the range of terrestrial rocks. In general, there is no obvious relationship between Raman groups and infrared classes which are based on the 10 μm absorption band due to silicates. In part, this is due to the fact that no Raman bands for silicates are seen, although silicates are known to be present from infrared and analytical electron microscopic measurements. The lack of silicate bands indicates that the silicate grains are coated with and/or imbedded in a carbonaceous material, which is presumably the reason that the particles look black in the visible. Several particles also show broad visible laser-induced photoluminescence, which is also probably produced by a carbonaceous component.  相似文献   

5.
The lavas of the 1955 east rift eruption of Kilauea Volcano have been the object of considerable petrologic interest for two reasons. First, the early 1955 lavas are among the most differentiated ever erupted at Kilauea, and second, the petrographic character and chemical composition of the lava being erupted changed significantly during the eruption. This shift, from more differentiated (MgO=5.0–5.7%) to more magnesian (MgO=6.2–6.8%) lava, has been variously interpreted, as either due to systematic excavation of a zoned, differentiated magma body, or to invasion of the differentiated magma by more primitive magma, followed by rapid mixing and eruption of the resulting hybrid magmas. Petrologic examination of several nearvent spatter samples of the late 1955 lavas shows abundant evidence for magma mixing, including resorbed and/or reversely zoned crystals of olivine, augite and plagioclase. In addition, the compositional ranges of olivine, plagioclase and groundmass sulfide are very large, implying that the assemblages are hybrid. Core compositions of olivine phenocrysts range from Fo85 to Fo77. The most magnesian olivines in these samples must have originally crystallized from a melt containing 8.0–8.5% MgO, which is distinctly more magnesian than the bulk composition of the late 1955 lavas. The majorelement and trace-element data are either permissive or supportive of a hybrid origin for the late 1955 lavas. In particular, the compositional trends of the 1955 lavas on plots of CaO vs MgO, and the virtual invariance of Al2O3 and Sr in these plagioclase-phyric lavas are more easily explained by magma mixing than by fractionation. The pattern of internal disequilibrium/re-equilibration in the late 1955 spatter samples is consistent with reintrusion and mixing having occurred at least twice, during the latter part of the 1955 eruption. Plagioclase zonation preserves possible evidence for additional, earlier reintrusion events. Least-squares modelling the mixing of early 1955 bulk compositions with various summit lavas±olivine pick the 1952 summit lava as most like the primitive component. The results also indicate the primitive component had MgO=7.5–8.0%, corresponding to liquidus temperatures of 1165–1175°C. The absence of Fe-Ti oxide phenocrysts in the late 1955 lavas implies that the cooler component of the hybrid had T>1110°C. Thus the thermal contrast between the two components may have been as much as 55–65°C, sufficient to produce the conspicuous disequilibrium effects visible in the spatter samples.  相似文献   

6.
An analysis of the textures of pallasites has been made using data concerning the kinetic and rheological properties of silicates and metals. Pallasites containing rounded olivines (e.g., the Springwater and Brehnam pallasites) have been heated to above the solidus temperature of the metallic iron phases, ~ 1270 K. The rounded olivines of grain size 0.5–1.0 cm observed in the Springwater pallasites were formed between 1270 and 1370 K. On the other hand, those of grain size 0.5–1.0 mm as found in the Brehnam pallasites may have been heated to above 1370 K; however, the duration of heating at such high temperatures must have been less than 5 × 103 y. Pallasites containing angular olivines with microscopically rounded corners (e.g., the Eagle Station, Dora pallasites) have suffered shock events fracturing the olivine grains, which may correspond to collisions during the accretional stage of the parent body, and experienced successive annealing during cooling from a temperature between 1150 and 1270 K.  相似文献   

7.
Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5–6.0 GPa; T  1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate–silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene – a hydrous carbonate melt – and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the mantle wedge.  相似文献   

8.
Numerous summit and parasitic eruptions of moderate potassium magnesian and high-alumina basalts and basaltic andesites, their mineralogic and geochemical features, and the composition of in situ chilled melt inclusions in the olivine of cinder lapilli discharged by Klyuchevskoi Volcano all provide evidence of the presence of magma chambers beneath the volcano. This is also supported by a dualism in the variation of CaO and Al2O3 concentrations in olivine and clinopyroxene during crystallization. The mineralogic features in the high-alumina basalts that were discharged by all parasitic eruptions of Klyuchevskoi provide evidence of magnesian magma being emplaced from a deeper chamber into a shallow high-alumina chamber. The distribution of incoherent elements in the volcano’s magnesian and aluminiferous rocks shows that they came from a single mantle source. The geochemical and mineralogic data are in good agreement with the results of geophysical surveys that concern the structure and properties of the lithosphere beneath Klyuchevskoi.  相似文献   

9.
The origin of olivine grains isolated in the matrix of C2 carbonaceous chondrites is an important problem. If these grains are condensates from a solar nebular gas, they contain compositional, isotopic and physical features that further elucidate that process. If, however, they are grains released by the breakup of chondrules, then many important condensation features have been lost during the melting that took place to form chondrules.In evaluating these two possibilities, care must be taken to determine which inclusions in C2 meteorites are actual chondrules and which are aggregates of grains that have never undergone melting. The two main types of aggregates, pyroxene-rich and pyroxene-poor, are forty to fifty times more abundant than chondrules. Four scenarios are presented to account for the kinds of aggregates and isolated grains seen in the Murchison C2 meteorite. An analysis of these scenarios is made in light of olivine crystal morphology, comparison of composition of glass inclusions inside olivine grains with interstitial glass in true chondrules and size distributions of olivines, isolated, in aggregates and in chondrules.It is concluded that no scenario that includes a chondrule-making step can account for the observed population of isolated olivine grains. An origin by direct condensation, partial comminution, aggregation and accretion best accounts for the sizes and morphological features observed.  相似文献   

10.
Hiroyuki  Ishimoto  Kenji  Shuto  Yoshihiko  Goto 《Island Arc》2006,15(2):251-268
Abstract   Middle Miocene to Quaternary primitive basalts and high magnesian andesite (HMA) in North Hokkaido resulted from three periods of intense volcanism; early-stage (12–10 Ma), middle-stage (9–7 Ma) and late-stage (3–0 Ma). Based on the chemical compositions of olivines and chromian spinels and bulk chemistry of the primitive rocks, we examined depths of segregation of the calculated primary magmas and the degrees of partial melting of the source mantle. In the context of asthenospheric mantle upwelling, petrological data from the present study can be accounted for by the secular change in the depth of magma segregation from the upwelled asthenospheric mantle, which is composed of fertile peridotite. Thus, the early-stage primary magmas were generated by higher degrees of partial melting of the shallower part of hot asthenospheric mantle, whereas the middle- and late-stage primary magmas resulted from lower degrees of partial melting of a deeper part of the asthenospheric mantle. The early-stage HMA magma was generated by partial melting of the remnant subcontinental lithospheric mantle composed of refractory peridotite. This melting might have resulted from an increased geothermal gradient caused by upwelling of hot asthenosphere.  相似文献   

11.
Granoblastic olivine aggregates (GOA) have been discovered in some Type I magnesian chondrules within carbonaceous chondrites by Libourel and Krot [Libourel, G., Krot, A.N., 2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth Planet. Sci. Lett. 254, 1–8], who proposed an origin from pre-existing planetesimals. Amoeboid olivine aggregates (AOA), generally considered as aggregates of solar nebula condensates and found within similar carbonaceous chondrites, display similar equilibrium texture, though on a finer scale. For these reasons, we conducted experiments to determine if annealing of olivine required time scales appropriate to planetesimal or nebular heating. Pressed < 43 µm and < 63 µm San Carlos olivine powder (Fo88.4) was isothermally heated at temperatures ranging from 1350–1550 °C for 1–100 h. The 100 h runs yield olivine aggregates with well-developed granoblastic texture at all temperatures, manifest as a network of randomly-oriented and sutured olivine grains with 120° triple junctions. Individual olivine grains are 4–6 sided and polygonal by 1450 °C and equigranular texture is developed at high temperature (1500–1550 °C). Melting of olivine commences at 1450–1500 °C and aids in ‘ripening’ and suturing (grain coarsening and grain boundary migration). Textural equilibrium is clearly met at 1550 °C. A planetesimal origin cannot be ruled out; however, the experimental evidence reveals that granoblastic texture can be reproduced in an interval not inconsistent with heating times for nebular objects. GOA may have experienced higher degrees of thermal processing than the finer-grained AOA. If the precursors were the same, grain coarsening would have to be accompanied by modification to bulk and isotopic compositions. However, the precursors could have been olivine condensates formed later than AOA. Annealing may have been a widespread process operating in the primordial solar nebula responsible for thermal processing and formation of GOA prior to their incorporation into chondrules.  相似文献   

12.
A suite of ultramafic xenoliths 2–10 cm in size occurs in basanite near Papeete, Tahiti, and consists of spinel lherzolites with minor dunites and wehrlites. Petrographic examination of xenoliths reveals that they are typically coarse grained with well-developed annealed textures. Microprobe analyses of constituent minerals in 11 xenoliths indicate that bulk compositions of xenoliths are magnesian but with significant variability from xenolith to xenolith especially in Fe/Mg and Cr/Al ratios and in absolute amounts of Al2O3 and Cr2O3. Within any single xenolith, however, coexisting minerals are homogeneous and appear to be compositionally equilibrated. Geothermometry of coexisting orthopyroxene and augite indicates temperatures of equilibration of about 1100°C but there is considerable uncertainty in this estimate due to significant non-quadrilateral pyroxene substitutions. There is no accurate way to determine pressures, but the ubiquity of Cr-poor spinel and absence of garnet imply pressures less than about 15–20 kbar.The margins of most xenoliths show significant alteration through reaction with enclosing alkaline magma. Principal reaction features include zoning of spinels and olivines toward compositions in equilibrium with the magma, and reaction-melting of orthopyroxene to a symplectite of olivine plus silica-rich glass. Glass composition profiles across the symplectites indicate that alkalis, titanium and aluminum diffused into the symplectite from the magma and that silica diffused into the magma. All glass analyses show very low iron, magnesium and calcium.Xenolith mineral assemblages and chemistry indicate their origin in the upper mantle at relatively shallow depths. They are therefore not related genetically to the enclosing basanite magma which came from deeper in the mantle, but rather are accidental fragments of country rock picked up by magma on its way to the surface. The details of the reaction features strongly imply that the magma had partially crystallized by the time it reacted with xenoliths, possibly while still in the mantle.  相似文献   

13.
Kimberlite pipes can contain significant proportions of dark and dense kimberlite that have mostly been interpreted as intrusive coherent (hypabyssal) in origin. This study reports a well-documented occurrence of a fresh intra-crater clastogenic extrusive coherent kimberlite that is concluded to have formed as a result of lava fountaining. This paper focuses on a dark, dense, competent, generally crystal-rich, massive kimberlite unit within the Victor Northwest kimberlite pipe (Ontario, Canada). Using a comprehensive volcanological and petrographic analysis of all available drill cores, it is shown that this unit has a fresh well-crystallised coherent groundmass and is extrusive and pyroclastic in origin. The proposed clastogenic coherent extrusive origin is based on deposit morphology, gradational contacts to enveloping pyroclastic units, as well as the presence of remnant pyroclast outlines and angular broken olivines. This paper, and an increasing number of other studies, suggest that fragmental extrusive coherent kimberlite in intra-crater settings may be more common than previously thought. The emplacement history and volcanology of these pipes need to be reconsidered based on the emerging importance of this particular kimberlite facies.  相似文献   

14.
Dislocation microstructures in naturally deformed silicate garnets   总被引:1,自引:0,他引:1  
Dislocation microstructures of naturally deformed silicate garnets and olivines in garnet-peridotites and silicate garnets in eclogites from four localities have been observed with a transmission electron microscope (TEM) to clarify the dislocation characteristics of silicate garnets. We have obtained the following results: (1) dislocation densities of garnets in all the garnet-peridotites (ρ = 105−107 cm−2) are always nearly an order of magnitude lower than those of co-existing olivines; (2) dislocation densities of garnets in eclogites (ρ = 105−108 cm−2) which are embedded in garnet-peridotites are almost an order of magnitude higher than those of garnets in the surrounding garnet-peridotites; (3) the dominant Burgers vector, b, of mainly edge dislocations in garnet is 100 for specimens with dislocation density ρ = 105−106 cm−2, while b=1/2111 for specimens with ρ = 107−108 cm−2. Result (1) indicates that the observed dislocations in garnets were formed by plastic deformation under the same stresses as for co-existing olivines, and that there is a similar relationship between applied stress and dislocation density for garnets as for olivines. Result (2) suggests that the stress concentration occurred around eclogites embedded in garnet-peridotites, and the resulting differential stress in garnets in eclogites was further elevated by the interlocking of neighboring hard garnet grains. Finally, result (3) indicates that the dominant Burgers vector of mainly edge dislocations in garnet changes from 100 to 1/2111 with increasing applied differential stress.  相似文献   

15.
The basaltic ocean crust, metasomatized and metamorphosed during and after generation at the ocean ridge, contains H2O stored in minerals and pore fluid. Phase equilibrium data establish the conditions for dehydration, and the conditions for melting of amphibole-gabbro or amphibole-quartz-eclogite, or for quartz-eclogite or mantle peridotite if aqueous fluids are available. But there is no concensus about the temperature distribution through the subducted crust, or within the overlying mantle wedge. Therefore, a variety of magmatic models can be derived from the experimental data. According to some calculations, endothermic dehydration reactions in the depth interval 75–125 km cool the oceanic crust to such an extent that it cannot be a major source of magmas; instead, concentrated aqueous fluids released from the crust generate magmas in the overlying peridotite. However, according to most existing thermal models, if temperatures in ocean crust are cool enough to prohibit melting of amphibolite, then temperatures in the mantle above the main sources of expelled fluids are too low for hydrous melting. The ocean crust appears to be effectively dehydrated by 100–125 km depth. Dense hydrous magnesian silicates are not likely candidates for deeper H2O transport. The extent to which H2O can be fixed in metasomatic phlogopite in crust or mantle is a significant but undetermined factor. Experimental data on minerals and liquid compositions do not support the concept of primary magmas for andesites and associated lavas from mantle or subducted crust. Complex, multi-stage processes appear to be more likely, which is consistent with recent interpretations of geochemical data.  相似文献   

16.
Aleutian magnesian andesites: Melts from subducted Pacific ocean crust   总被引:15,自引:0,他引:15  
Several diagnostic chemical characteristics of an uncommon Aleutian magma type support a proposed origin that involves a small amount of partial melting of subducted Pacific ocean crust (basalt) consisting mainly of garnet and clinopyroxene (eclogite or garnet websterite). Among the characteristics are high La/Yb ratios and Sr contents and low ratios of radiogenic to non-radiogenic Sr and Pb. The major element composition of the andesites resembles that of hydrous melts in equilibrium with peridotite: a low ratio of total Fe to Mg is distinctive. These disparate observations can be reconciled if large ion lithophile (LIL)- element-rich hydrous melt from the subducted oceanic crust equilibrates with olivine and orthopyroxene in overlying LIL-element-depleted mantle and then erupts without interacting with the island are crust. The compositional dissimilarity of the magnesian andesites and most other andesites from the Aleutian island arc precludes application of this model to island are magmatism in general.  相似文献   

17.
We report opaque mineralogical observations and magnetic properties of primary titanomagnetites in Tertiary submarine gabbros from DSDP, Legs 30 and 37 and in a late Archean, continental granitic pluton, the Shelley Lake granite. The titanomagnetites and silicates in all the submarine gabbros have been deuterically oxidized. There is no indication of subsequent low-temperature oxidation, although serpentization of olivines is pervasive in the deeper Leg 37 units. The Leg 30 samples, from a single thick sill, contain abundant coarse (≈100 μm) titanomagnetites with fully developed ilmenite exsolution lamellae. Curie temperatures are 515–550°C; there are no low Curie temperatures that would indicate surviving unoxidized titanomagnetite. The unserpentinized Leg 37 gabbros contain scarce opaques with pure magnetite Curie points that are barely resolvable microscopically; most occur as inclusions in pyroxene. In the Shelley Lake granite, on the other hand, many samples exhibit bimodal blocking-temperature spectra, with blocking temperature peaks at 250–300°C and 550–575°C. The low-blocking-temperature phase is unidentified. No pyrrhotite was seen in thin section. Optically homogeneous grains coexist with fully exsolved neighbours, but the electron microprobe indicates no titanium. The lamellae appear to be haematite, not ilmenite, and the primary composition of the opaques is pure magnetite. The oxidation state of the opaques is very inhomogeneous, even on a fine scale.  相似文献   

18.
Origin of calc-alkalic andesite in the Japanese Islands is reviewed on the basis of the recent trace element data and new experimental results. It is suggested that calc-alkalic andesites in the Japanese Islands have at least four different origins; (1) fractional crystallization with separation of magnetite of high-alumina basalt magma, (2) partial melting of hydrous upper mantle peridotite (for magnesian andesite), (3) fractional crystallization with separation of olivine and/or orthopyroxene of magnesian andesite magma and (4) mixing of dacitic and basaltic magmas. Emphasis is placed on the possible generation of primary magnesian calc-alkalic andesite magmas by direct partial melting of the upper mantle peridotite under hydrous conditions at depths between 40 and 60 km.  相似文献   

19.
Saba is composed of basic and intermediate members of the calc alkaline series with a broad resemblance to volcanic rocks on other islands of the northern Lesser Antilles. The most abundant rock-type is hornblende andesite with relatively high potassium and associated elements. Notable petrographic features are the persistence of magnesian olivine into relatively siliceous whole-rock composition and the prevalence of hornblende even in the more basic rocks. Quartz xenocrysts also occur in the basalts Clinopyroxene phenocrysts are of an gite composition but groundmass grains are sometimes in the range subcalcic augite to magnesian pigeonite. Disequilibrium features in the petrography, together with anomalies in the chemical trends may be due to incorporation of xenocrysts or perhaps in extreme instances to the hybridisation of contrasting magmas.  相似文献   

20.
J. G. Liou    R. Y. Zhang  W. G. Ernst 《Island Arc》1995,4(4):362-375
Abstract Minor epidote-zoisite, phengite, glaucophane, nyböite, talc, magnesite, and dolomite occur as matrix phases or as mineral inclusions in some ultrahigh-pressure (UHP) rocks from the Dabie-Sulu terrane. Some of these phases contain inclusions of coesite or coesite pseudomorphs and appear to have been in equilibrium with coesite at the time of formation. Their occurrences in the UHP rocks together with experimentally determined and calculated phase relations indicate that they are stable at mantle depths in relatively low-temperature environments. Because of the apparently dry nature of subducted continental protoliths of the Yangtze craton, small amounts of volatile components at depths exceeding 50 km along a cold subduction zone may have been stored mainly by these hydrous and carbonate phases. These minerals, in addition to some dense hydrous magnesian silicates, act as important carriers for H2O and CO2 recycled at mantle depths. Available petrological and geochemical data support limited or no fluid flow in this region. At very high pressures and low temperatures, the subducted sialic crust evidently served as a desiccating agent. Partial melting of the subducting slab, therefore, may not have occurred, and near absence of volatile expulsion from the subducting slab to the overlying mantle wedge + continental crust may have inhibited large-scale partial melting, accounting for the lack of a typical contemporaneous calc-alkaline magmatic arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号