首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract– Hypervelocity impact experiments on dry and water‐saturated targets of fine‐grained quartz sandstone, performed within the MEMIN project, have been investigated to determine the effects of porosity and pore space saturation on deformation mechanisms in the crater’s subsurface. A dry sandstone cube and a 90% water‐saturated sandstone cube (Seeberger Sandstein, 20 cm side length, about 23% porosity) were impacted at the Fraunhofer EMI acceleration facilities by 2.5 mm diameter steel spheres at 4.8 and 5.3 km s?1, respectively. Microstructural postimpact analyses of the bisected craters revealed differences in the subsurface deformation for the dry and the wet target experiments. Enhanced grain comminution and compaction in the dry experiment and a wider extent of localized deformation in the saturated experiment suggest a direct influence of pore water on deformation mechanisms. We suggest that the pore water reduces the shock impedance mismatch between grains and pore space, and thus reduces the peak stresses at grain–grain contacts. This effect inhibits profound grain comminution and effective compaction, but allows for reduced shock wave attenuation and a more effective transport of energy into the target. The reduced shock wave attenuation is supposed to be responsible for the enhanced crater growth and the development of “near surface” fractures in the wet target.  相似文献   

2.
Laboratory impact experiments in the micron to millimeter projectile size range in silicate and metal targets have been performed in order to clarify the still ambigously interpreted velocity dependence of the crater diameter to depth ratios (DT). The experimental results clearly show the independence of the DT ratio of velocities above a threshold velocity of 3–4 km s?1. The DT ratio is a function of target properties and of projectile density ?. For a given target, the resulting approximate relation is DT ~ ? with α varying between 12and15.  相似文献   

3.
Shatter cones are diagnostic for the recognition of meteorite impact craters. They are unambiguously identifiable in the field and the only macroscopic shock deformation feature. However, the physical boundary conditions and exact formation mechanism(s) are still a subject of debate. Melt films found on shatter cone surfaces may allow the constraint of pressure–temperature conditions during or immediately after their formation. Within the framework of the MEMIN research group, we recovered 24 shatter cone fragments from the ejecta of hypervelocity impact experiments. Here, we focus on silicate melt films (now quenched to glass) found on shatter cone surfaces formed in experiments with 20–80 cm sized sandstone targets, impacted by aluminum and iron meteorite projectiles of 5 and 12 mm diameter at velocities of 7.0 and 4.6 km s−1, respectively. The recovered shatter cone fragments vary in size from 1.2 to 9.3 mm. They show slightly curved, striated surfaces, and conical geometries with apical angles of 36°–52°. The fragments were recovered from experiments with peak pressures ranging from 46 to 86 GPa, and emanated from a zone within 0.38 crater radii. Based on iSale modeling and petrographic investigations, the shatter coned material experienced low bulk shock pressures of 0.5–5 GPa, whereas deformation shows a steep increase toward the shatter cone surface leading to localized melting of the rock, resulting in both vesicular as well as polished melt textures visible under the SEM. Subjacent to the melt films are zones of fragmentation and brittle shear, indicating movement away from the shatter cone apex of the rock that surrounds the cone. Smearing and extension of the melt film indicates subsequent movement in opposite direction to the comminuted and brecciated shear zone. We believe the documented shear textures and the adjacent smooth melt films can be related to frictional melting, whereas the overlying highly vesiculated melt layer could indicate rapid pressure release. From the observation of melting and mixing of quartz, phyllosilicates, and rutile in this overlying texture, we infer high, but very localized postshock temperatures exceeding 2000 °C. The melted upper part of the shatter cone surface cross-cuts the fragmented lower section, and is accompanied by PDFs developed in quartz parallel to the {112} plane. Based on the overprinting textures and documented shock effects, we hypothesize shatter cones start to form during shock loading and remain an active fracture surface until pressure release during unloading and infer that shatter cone surfaces are mixed mode I/II fracture surfaces.  相似文献   

4.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   

5.
Abstract– Previous workers have proposed that a northern ocean existed early during Martian geologic history and the shorelines of that ocean would coincide roughly with the crustal dichotomy that divides the smooth, northern lowlands with the cratered, southern highlands. Arabia Terra is a region on Mars that straddles the crustal dichotomy, and several proposed shorelines are located in the area. Shallow marine impact craters on Mars likely would exhibit features like those on Earth, including characteristic morphological features that are distinctly different from that of craters formed on land. Common attributes of terrestrial marine impact craters include features of wet mass movement such as gravity slumps and debris flows; radial gullies leading into the crater depression; resurge deposits and blocks of dislocated materials; crater rim collapse or breaching of the crater wall; a central peak terrace or peak ring terrace; and subdued topography (an indicator of both age and possible flood inundation immediately following impact). In this article, these features have been used to evaluate craters on Mars as to a possible marine origin. This study used a simple quantification system to approximately judge and rank shallow marine impact crater candidates based on features observed in terrestrial analogs. Based on the quantification system, 77 potential shallow marine impact craters were found within an area bounded by 20°N and 40°N as well as 20°W and 20°E. Nine exemplary candidates were ranked with total scores of 70% or more. In a second, smaller study area, impact craters of approximately similar size and age were evaluated as a comparison and average total scores are 35%, indicating that there is some morphological difference between craters inside and outside the proposed shorelines. Results of this type of study are useful in helping to develop a general means of classification and characterization of potential marine craters.  相似文献   

6.
Laurel E. Senft 《Icarus》2011,214(1):67-81
Impact craters on icy satellites display a wide range of morphologies, some of which have no counterpart on rocky bodies. Numerical simulation studies have struggled to reproduce the diversity of features, such as central pits and transitions in crater depth with increasing diameter, observed on the icy Galilean satellites. The transitions in crater depth (at diameters of about 26 and 150 km on Ganymede and Callisto) have been interpreted as reflecting subsurface structure. Using the CTH shock physics code, we model the formation of craters with diameters between 400 m and about 200 km on Ganymede using different subsurface temperature profiles. Our calculations include recent improvements in the model equation of state for H2O and quasi-static strength parameters for ice. We find that the shock-induced formation of dense high-pressure polymorphs (ices VI and VII) creates a gap in the crater excavation flow, which we call discontinuous excavation. For craters larger than about 20 km, discontinuous excavation concentrates a hot plug of material (>270 K and mostly on the melting curve) in the center of the crater floor. The size and occurrence of the hot plug are in good agreement with the observed characteristics of central pit craters, and we propose that a genetic link exists between them. We also derive depth versus diameter curves for different internal temperature profiles. In a 120 K isothermal crust, calculated craters larger than about 30 km diameter are deeper than observed and do not reproduce the transition at about 26 km diameter. Calculated crater depths are shallower and in good agreement with observations between about 30 and 150 km diameter using a warm thermal gradient representing a convective interior. Hence, the depth-to-diameter transition at about 26 km reflects thermal weakening of ice. Finally, simulation results generally support the hypothesis that the anomalous interior morphologies for craters larger than 100 km are related to the presence of a subsurface ocean.  相似文献   

7.
An analysis is made of the periodicity hypothesis of the ages of large craters, based on the compilation by Grieve with the addition of recently identified craters. A method earlier proposed by Broadbent is used to derive a period, and the significance of the derived period is tested by a Monte Carlo experiment. In accordance with the result of Stothers, the ages of large craters  ( D >30 km)  are shown to exhibit a period close to 37.5 Myr. Monte Carlo experiments show, however, that the derived period is far from being statistically significant. A subset of crater data earlier adopted by Napier for the purpose of similar investigation is also tested, and it is shown that they also exhibit a similar period at an almost identical level of confidence. A brief discussion is made of the relation between the derived period and that associated with faunal mass extinctions.  相似文献   

8.
Most impacts occur at an angle with respect to the horizontal plane. This is primarily reflected in the ejecta distribution, but at very low angle structural asymmetries such as elongation of the crater and nonradial development of the central peak become apparent. Unfortunately, impact craters with pristine ejecta layers are rare on Earth and also in areas with strong past or ongoing surface erosion on other planetary bodies, and the structural analysis of central peaks requires good exposures or even on‐site access to outcrop. However, target properties are known to greatly influence the shape of the crater, especially the relatively common target configuration of a weaker layer covering a more rigid basement. One such effect is the formation of concentric craters, i.e., a nested, deeper, inner crater surrounded by a shallow, outer crater. Here, we show that with decreasing impact angle there is a downrange shift of the outer crater with respect to the nested crater. We use a combination of (1) field observation and published 3‐D numerical simulation of one of the best examples of a terrestrial, concentric impact crater formed in a layered target with preserved ejecta layer: the Lockne crater, Sweden; (2) remote sensing data for three pristine, concentric impact craters on Mars with preserved ejecta layers further constraining the direction of impact; as well as (3) laboratory impact experiments, to develop the offset in crater concentricity into a complementary method to determine the direction of impact for layered‐target craters with poorly preserved ejecta layers.  相似文献   

9.
Confirmed small impact craters in unconsolidated deposits are rare on Earth, and only a few have been the subjects of detailed investigations. Consequently, our knowledge of indicators permitting unambiguous identification of such structures is limited. In this work, detailed geological mapping was performed in the area of the Morasko craters, of which the largest crater is of about 96 m diameter. These craters were formed in the mid‐Holocene (~5000 yr ago) in unconsolidated sediments of a glacial terminal moraine. Fragments of the impactor—an iron meteorite—have been found in the craters’ vicinity for many decades. Despite numerous studies of the meteorite, no detailed research concerning the geological structure around the craters and of the ejecta deposits has been undertaken. The new data, including evaluation of over 52 sediment cores and 260 shallow drillings, permit the identification of four main sediment types: Neogene clays, diamicton with Neogene clay clasts containing charcoal pieces, diamicton without clasts, and sand with locally preserved paleosoil and charcoal pieces. Based on sedimentological properties, the ejecta deposits are mainly identified as diamicton with Neogene clay clasts, described as lithic impact breccia, covering locally preserved pre‐impact soil. Moreover, crater sections characterized by inverse stratigraphy of sediments are identified as belonging to overturned flaps.  相似文献   

10.
Abstract— We used Mars Orbiter Laser Altimeter (MOLA), Thermal Emission Imaging System visible light (THEMIS VIS), and Mars Orbiter Camera (MOC) data to identify and characterize the morphology and geometry of the distal ramparts surrounding Martian craters. Such information is valuable for investigating the ejecta emplacement process, as well as searching for spatial variations in ejecta characteristics that may be due to target material properties and/or latitude, altitude, or temporal variations in the climate. We find no systematic trend in rampart height that would indicate regional variations in target properties for 54 ramparts at 37 different craters 5.7–35.9 km in diameter between 52.3°S to 47.6°N. Rampart heights for multi‐lobe and single‐lobe ejecta are each normally distributed with a common standard deviation, but statistically distinct mean values. Ramparts range in height from 20–180 m, are not symmetric, are typically steeper on their distal sides, and may be as much as ?4 km wide. The ejecta blanket proximal to parent crater from the rampart may be very thin (<5 m). A detailed analysis of two craters, Toconao crater (21°S, 285°E) (28 measurements), and an unnamed crater within Chryse Planitia (28.4°N, 319.6°E) (20 measurements), reveals that ejecta runout distance increases with an increase in height between the crater rim and the rampart, but that rampart height is not correlated with ejecta runout distance or the thickness of the ejecta blanket.  相似文献   

11.
W.W. Mullins 《Icarus》1978,33(3):624-629
A previous analysis of a stochastic model of lunar-type impact cratering is extended to utilize geological age data by defining a more general statistic Ωi(t) to be the number of equivalent whole craters of original diameter di and age ≤t in an observational area A; each crater is taken to be equivalent to the fraction of its rim (or area) that is in A and not occluded by later craters. By integration of a new gain-loss differential equation, a generalization of the previous basic equation is obtained that relates the expected value ωi(t) = E[Ωi(t)] to the process functions specifying the size distribution and flux of craters (primary or secondary) as they form. The results are specialized to the plausible case in which the cratered body can be subdivided into geological provinces of increasing ages t1, t2, …, ti … and the size probability distribution can be approximated as constant within each of the periods ti+1 - ti. It is shown that use of the Ωi permits, in principle, a reconstruction of the historical values of the process functions and correctly compensates for the effect of overlap by removing the false bias favoring large craters that results from the usual method of crater counting. Possible generalizations of the gain-loss equation are indicated.  相似文献   

12.
Magnetic fields generated by the electrical currents associated with thermal forces in an impact-produced plasma cloud are proposed as a possible explanation of the magnetic perturbation observed during hypervelocity impact events. Order of magnitude estimates for this effect show that this is compatible with experimental findings. We suggest that this effect may contribute to the magnetisation observed in the neighbourhood of lunar craters (see, e.g. Anderson and Wilhelms, Earth Planet. Sci. Letts.46, 107).  相似文献   

13.
Abstract— The lengths of the shadows cast within simple, bowl‐shaped impact craters have been used to constrain their depths on a variety of planetary bodies. This technique, however, only yields the “true” crater depth if the shadow transects the crater center where the floor is deepest. In the past, attempts have been made to circumvent this limitation by choosing only craters where the shadow tip lies very near the crater center; but this approach may introduce serious artifacts that adversely affect the slope of the regressed depth vs. diameter data and its variance. Here we introduce an improved method for deriving depth information from shadow measurements that considers three basic shape variations of simple craters: paraboloidal, conical, and flat‐floored. We show that the shape of the cast shadow can be used to constrain crater shape and we derive improved equations for finding the depths of these simple craters.  相似文献   

14.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   

15.
The anomalously high number of craters with diameter less than 2.8 km, the igneous nature of rocks from the Apollo landing sites, and the possibility of outgassing magmas in the lunar crust, suggest that fluidization may be a viable mechanism for producing many of the smaller lunar craters, Fluidization craters were formed in the laboratory by blowing gas through various thicknesses of particulate material. Gas pressure, regolith thickness, and the duration of gas streaming were controlled over practical experimental limits and compared with the resultant crater morphology. Low to moderate fluidization pressures on coarsely crushed limestone (Mø = 0.40, So = =0.50) with low cohesion (ø - 43°) produced bowl shaped, basin shaped, and flat bottomed craters. Bowl shaped craters change into basin shaped and/or flat bottomed craters with long durations of gas streaming. Cone, funnel, and flat-funnel shaped craters are indicative of high fluidization pressures. Craters formed in finely crushed limestone (Mø - 1.55, So - 0.85) that is electrostatically charged by the streaming gas, are flat bottomed. Terraced craters develop from slumping during and after the discontinuation of gas flow. Central mounds inn terraced craters result from slumping into a confined space. In particulate material, fluidization craters have high circularity and axial symmetry, similar to those produced by impact. The use of an impact model and crater morphology (normal, flat bottomed, and concentric) for estimating lunar regolith depth is questioned because similar craters can be produced by fluidizationn processes in a thicker regolith.On leave at the Earth Physics Branch, Dept. of Energy, Mines and Resources, Ottawa, Canada.  相似文献   

16.
Abstract– Planetary surfaces are subjected to meteorite bombardment and crater formation. Rocks forming these surfaces are often porous and contain fluids. To understand the role of both parameters on impact cratering, we conducted laboratory experiments with dry and wet sandstone blocks impacted by centimeter‐sized steel spheres. We utilized a 40 m two‐stage light‐gas gun to achieve impact velocities of up to 5.4 km s?1. Cratering efficiency, ejection velocities, and spall volume are enhanced if the pore space of the sandstone is filled with water. In addition, the crater morphologies differ substantially from wet to dry targets, i.e., craters in wet targets are larger, but shallower. We report on the effects of pore water on the excavation flow field and the degree of target damage. We suggest that vaporization of water upon pressure release significantly contributes to the impact process.  相似文献   

17.
Abstract— Marine impacts are one category of crater formation in volatile targets. At target water depths exceeding the diameter of the impactor, the zones of vaporization, melting, and excavation of the standard land‐target cratering model develop partially or entirely in the water column. The part of the crater that has a potential of being preserved (seafloor crater) may to a great extent be formed by material emplacement and excavation processes that are very different from land‐target craters. These processes include a high‐energy, water‐jet‐driven excavation flow. At greater water depths, the difference in strength of the target layers causes a concentric crater to evolve. The crater consists of a wide water cavity with a shallow excavation flow along the seabed surrounding a nested, deeper crater in the basement. The modification of the crater is likewise influenced by the water through its forceful resurge to fill the cavity in the water mass and the seafloor. The resurge flow is strongly erosive and incorporates both ejecta and rip‐up material from the seabed surrounding the excavated crater. A combination of field observations and impact experiments has helped us analyze the processes affecting the zone between the basement crater and the maximum extent of the water cavity. The resurge erosion is facilitated by fragmentation of the upper parts of the solid target caused by a) spallation and b) vibrations from the shallow excavation flow and, subsequently, c) the vertical collapse of the water cavity rim wall. In addition, poorly consolidated and saturated sediments may collapse extensively, possibly aided by a violent expansion of the pore water volume when it turns into a spray during passage of the rarefaction wave. This process may also occur at impacts into water‐saturated targets without an upper layer of seawater present. Our results have implications for impacts on both Earth and Mars, and possibly anywhere in the solar system where volatiles exist/have existed in the upper part of the target.  相似文献   

18.
19.
Abstract— We have surveyed Martian impact craters greater than 5 km in diameter using Viking and thermal emission imaging system (THEMIS) imagery to evaluate how the planform of the rim and ejecta changes with decreasing impact angle. We infer the impact angles at which the changes occur by assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ. At impact angles less than ?40° from horizontal, the ejecta become offset downrange relative to the crater rim. As the impact angle decreases to less than ?20°, the ejecta begin to concentrate in the cross‐range direction and a “forbidden zone” that is void of ejecta develops in the uprange direction. At angles less than ?10°, a “butterfly” ejecta pattern is generated by the presence of downrange and uprange forbidden zones, and the rim planform becomes elliptical with the major axis oriented along the projectile's direction of travel. The uprange forbidden zone appears as a “V” curving outward from the rim, but the downrange forbidden zone is a straight‐edged wedge. Although fresh Martian craters greater than 5 km in diameter have ramparts indicative of surface ejecta flow, the ejecta planforms and the angles at which they occur are very similar to those for lunar craters and laboratory impacts conducted in a dry vacuum. The planforms are different from those for Venusian craters and experimental impacts in a dense atmosphere. We interpret our results to indicate that Martian ejecta are first emplaced predominantly ballistically and then experience modest surface flow.  相似文献   

20.
Abstract— We surveyed the impact crater populations of Venus and the Moon, dry targets with and without an atmosphere, to characterize how the 3‐dimensional shape of a crater and the appearance of the ejecta blanket varies with impact angle. An empirical estimate of the impact angle below which particular phenomena occur was inferred from the cumulative percentage of impact craters exhibiting different traits. The results of the surveys were mostly consistent with predictions from experimental work. Assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ, on the Moon, the following transitions occur: >?45 degrees, the ejecta blanket becomes asymmetric; >?25 degrees, a forbidden zone develops in the uprange portion of the ejecta blanket, and the crater rim is depressed in that direction; >?15 degrees, the rim becomes saddle‐shaped; >?10 degrees, the rim becomes elongated in the direction of impact and the ejecta forms a “butterfly” pattern. On Venus, the atmosphere causes asymmetries in the ejecta blanket to occur at higher impact angles. The transitions on Venus are: >?55 degrees, the ejecta becomes heavily concentrated downrange; >?40 degrees, a notch in the ejecta that extends to the rim appears, and as impact angle decreases, the notch develops into a larger forbidden zone; >?10 degrees, a fly‐wing pattern develops, where material is ejected in the crossrange direction but gets swept downrange. No relationship between location or shape of the central structure and impact angle was observed on either planet. No uprange steepening and no variation in internal slope or crater depth could be associated with impact angle on the Moon. For both planets, as the impact angle decreases from vertical, first the uprange and then the downrange rim decreases in elevation, while the remainder of the rim stays at a constant elevation. For craters on Venus >?15 km in diameter, a variety of crater shapes are observed because meteoroid fragment dispersal is a significant fraction of crater diameter. The longer path length for oblique impacts causes a correlation of clustered impact effects with oblique impact effects. One consequence of this correlation is a shallowing of the crater with decreasing impact angle for small craters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号