首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to gain further insight into their surface compositions and relationships with meteorites, we have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV slope, a 0.7 μm feature and a 3 μm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be characterized by the slopes of their continua. We thus plot the slope of the continuum between 1.8 and 2.5 μm against slope between 1.0 and 1.75 μm, the break at ∼1.8 μm chosen since phyllosilicates show numerous water-related features beyond this wavelength. On such plots, the C complex fields match those of phyllosilicates kaolinite and montmorillonite that have been heated to about 700 °C, while the X complex fields match the fields for phyllosilicates montmorillonite and serpentine that have been similarly heated. We thus suggest that the surface of the C complex asteroids consist of decomposition products of kaolinite or montmorillonite while for the X complex we suggest that surfaces consist of decomposition products of montmorillonite or serpentine. On the basis of overlapping in fields on the continuum plots we suggest that the CI chondrites are linked with the Cgh asteroids, individual CV and CR chondrites are linked with Xc asteroids, a CK chondrite is linked with the Ch or Cgh asteroids, a number of unusual CI/CM meteorites are linked with C asteroids, and the CM chondrites are linked with the Xk asteroids. The associations are in reasonable agreement with chondrite mineralogy and albedo data.  相似文献   

2.
S. Fornasier  B.E. Clark 《Icarus》2011,214(1):131-146
We present reflected light spectral observations from 0.4 to 2.5 μm of 24 asteroids chosen from the population of asteroids initially classified as Tholen X-type objects (Tholen, 1984). The X complex in the Tholen taxonomy comprises the E, M and P classes which have very different inferred mineralogies but which are spectrally similar to each other, with featureless spectra in visible wavelengths.The data were obtained during several observing runs in the 2004-2007 years at the NTT, TNG and IRTF telescopes. Sixteen asteroids were observed in the visible and near-infrared wavelength range, seven objects in the visible wavelength range only, and one object in the near-infrared wavelength range only. We find a large variety of near-infrared spectral behaviors within the X class, and we identify weak absorption bands in spectra of 11 asteroids. Our spectra, together with albedos published by Tedesco et al. (2002), can be used to suggest new Tholen classifications for these objects. We describe 1 A-type (1122), 1 D-type (1328), 1 E-type (possibly, 3447 Burckhalter), 10 M-types (77, 92, 184, 337, 417, 741, 758, 1124, 1146 and 1355), 5 P-types (275, 463, 522, 909, 1902), and 6 C-types (50, 220, 223, 283, 517, and 536). In order to constrain the possible composition of these asteroids, we perform a least-squares search through the RELAB spectral database. Many of the best fits are consistent with meteorite analogue materials suggested in the published literature. In fact, we find that seven of the new M-types can be fit with metallic iron (or pallasite) materials, and that the low albedo C/P-type asteroids are best fitted with CM meteorites, some of which have been subjected to heating episodes or laser irradiation. Our method of searching for meteorite analogues emphasizes the spectral characteristics of brightness and shape, and de-emphasizes minor absorption bands. Indeed, faint absorption features like the 0.9 μm band seen on four newly classified M-type asteroids are not reproduced by the iron meteorites. In these cases, we have searched for geographical mixture models that can fit the asteroid spectrum, minor bands, and albedo. We find that a few percent (less than 3%) of orthopyroxene added to iron or pallasite meteorite, results in good spectral matches, reproducing the weak spectral feature around 0.9 μm seen on 92 Undina, 417 Suevia, and 1124 Stroobantia. For 337 Devosa, a mixture model that better reproduces its spectral behavior and the 0.9 μm feature is made with Esquel pallasite enriched with goethite (2%).Finally, we consider the sample of the X-type asteroids we have when we combine the present observations with previously published observations for a total of 72 bodies. This sample includes M and E-type asteroid data presented in [Fornasier et al., 2008] and [Fornasier et al., 2010]. We find that the mean visible spectral slopes for the different E, M and P Tholen classes are very similar, as expected. An analysis of the X-type asteroid distribution in the main belt is also reported, following both the Tholen and the Bus-DeMeo taxonomies (DeMeo et al., 2009).  相似文献   

3.
We report an unexpected variability among mid-infrared spectra (IRTF and Spitzer data) of eight S-type asteroids for which all other remote sensing interpretations (e.g. VNIR spectroscopy, albedo) yield similar compositions. Compositional fitting making use of their mid-IR spectra only yields surprising alternative conclusions: (1) these objects are not “compositionally similar” as the inferred abundances of their main surface minerals (olivine and pyroxene) differ from one another by 35% and (2) carbonaceous chondrite and ordinary chondrite meteorites provide an equally good match to each asteroid spectrum.Following the laboratory work of Ramsey and Christensen (Ramsey, M.S., Christensen, P.R. [1998]. J. Geophys. Res. 103, 577-596), we interpret this variability to be physically caused by differences in surface particle size and/or the effect of space weathering processes. Our results suggest that the observed asteroids must be covered with very fine (<5 μm) dust that masks some major and most minor spectral features. We speculate that the compositional analysis may be improved with a spectral library containing a wide variety of well characterized spectra (e.g., olivine, orthopyroxene, feldspar, iron, etc.) obtained from very fine powders. In addition to the grain size effect, space weathering processes may contribute as well to the reduction of the spectral contrast. This can be directly tested via new laboratory irradiation experiments.  相似文献   

4.
The known close approach of Asteroid (99942) Apophis in April 2029 provides the opportunity for the case study of a potentially hazardous asteroid in advance of its encounter. The visible to near-infrared (0.55 to 2.45 μm) reflectance spectrum of Apophis is compared and modeled with respect to the spectral and mineralogical characteristics of likely meteorite analogs. Apophis is found to be an Sq-class asteroid that most closely resembles LL ordinary chondrite meteorites in terms of spectral characteristics and interpreted olivine and pyroxene abundances, although we cannot rule out some degree of partial melting. A meteorite analog allows some estimates and conjectures of Apophis' possible range of physical properties such as the grain density and micro-porosity of its constituent material. Composition and size similarities of Apophis with (25143) Itokawa suggest a total porosity of 40% as a “current best guess” for Apophis. Applying these parameters to Apophis yields a mass estimate of 2×1010 kg with a corresponding energy estimate of 375 Mt for its potential hazard. Substantial unknowns, most notably the total porosity, allow uncertainties in these mass and energy estimates to be as large as factors of two or three.  相似文献   

5.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

6.
Space weathering and the interpretation of asteroid reflectance spectra   总被引:1,自引:0,他引:1  
Michael J. Gaffey 《Icarus》2010,209(2):564-574
Lunar-style space weathering is well understood, but cannot be extended to asteroids in general. The two best studied Asteroids (433 Eros and 243 Ida) exhibit quite different space weathering styles, and neither exhibits lunar-style space weathering. It must be concluded that at this time the diversity and mechanisms of asteroid space weathering are poorly understood. This introduces a significant unconstrained variable into the problem of analyzing asteroid spectral data. The sensitivity of asteroid surface material characterizations to space weathering effects - whatever their nature - is strongly dependent upon the choice of remote sensing methodology. The effects of space weathering on some methodologies such as curve matching are potentially devastating and at the present time essentially unmitigated. On other methodologies such as parametric analysis (e.g., analyses based on band centers and band area ratios) the effects are minimal. By choosing the appropriate methodology(ies) applied to high quality spectral data, robust characterizations of asteroid surface mineralogy can be obtained almost irrespective of space weathering. This permits sophisticated assessments of the geologic history of the asteroid parent bodies and of their relationships to the meteorites. Investigations of the diversity of space weathering processes on asteroid surfaces should be a fruitful area for future efforts.  相似文献   

7.
We present the results of a visible spectroscopic survey of 820 asteroids carried on between November 1996 and September 2001 at the 1.52 m telescope at ESO (La Silla). The instrumental set-up allowed an useful spectral range of about 4900 Å<λ<9200 Å. The global spatial distribution of the observed asteroids covers quite well all the region between 2.2 and 3.3 AU though some concentrations are apparent. These are due to the fact that several sub-sets of asteroids, such as families and groups, have been selected and studied during the development of the survey. The observed asteroids have been classified using the Tholen and the Bus taxonomies which, in general, agree quite well.  相似文献   

8.
We present the observational results of a survey designed to target and detect asteroids whose photometric colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates were selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesimals from the inner Solar System (a<2.0 AU) and other partially/fully differentiated bodies likely contributed to this inventory. In particular, we infer the presence of basaltic fragments in the vicinity of Asteroid 15 Eunomia, which may be derived from a differentiated parent body in the middle Main Belt (2.5<a<2.8). We find no asteroidal evidence for a large number of previously undiscovered basaltic asteroids, which agrees with previous theories suggesting that basaltic fragments from the ∼100 differentiated parent bodies represented in meteorite collections have been “battered to bits” [Burbine, T.H., Meibom, A., Binzel, R.P., 1996. Meteorit. Planet. Sci. 31, 607-620].  相似文献   

9.
The NEAR mission to 433 Eros provided detailed data on the geology, mineralogy, and chemistry of this S-class asteroid [McCoy, T.J., Robinson, M.S., Nittler, L.R., Burbine, T.H., 2002. Chem. Erde 62, 89-121; Cheng, A.F., 1997. Space Sci. Rev. 82, 3-29] with a key science goal of understanding the relationship between asteroids and meteorites [Cheng, A.F., 1997. Space Sci. Rev. 82, 3-29; Gaffey, M.J., Burbine, T.H., Piatek, J.L., Reed, K.L., Chaky, D.A., Bell, J.F., Brown, R.H., 1993a. Icarus 106, 573-602]. Previously reported major element data revealed a bulk surface similar to that of ordinary chondrites, with the notable exception of sulfur, which was highly depleted [Trombka, J.I., and 23 colleagues, 2000. Science 289, 2101-2105; Nittler, L.R., and 14 colleagues, 2001. Meteorit. Planet. Sci. 36, 1673-1695]. The origin of this sulfur deficiency, and hence the fundamental nature of the asteroid's surface, has remained controversial. We report a new analysis of NEAR X-ray spectrometer data, indicating that Eros has Cr/Fe, Mn/Fe, and Ni/Fe ratios similar to ordinary chondrite meteorites of type LL or L. Chondritic levels of Cr, Mn, and Ni argue strongly against a partial melting explanation for the sulfur depletion. Instead, our results provide definitive evidence that Eros is a primitive body with composition and mineralogy similar to ordinary chondrites, but with a surface heavily modified by interactions with the solar wind and micrometeorites, processes collectively termed space weathering.  相似文献   

10.
S. Marchi  M. Lazzarin  S. Magrin 《Icarus》2005,175(1):170-174
We present new visible and near-infrared spectroscopic observations of 4 small, previously unclassified, near-Earth objects (NEOs). They appear to have basaltic surfaces, and hence they can be classified as V-types. Their visible spectra exhibit a closer spectral match with the Main-Belt (MB) Asteroid (4) Vesta than the other, presently known, V-type NEOs and MB asteroids. The near-infrared spectrum of Asteroid 2003 FT3 shows—for the first time among NEOs—a peculiar shape of the 1 μm band, maybe suggesting an overabundance of olivine compared to the other V-types and to (4) Vesta. The presence of V-type objects among NEOs may be a consequence of the delivery processes connecting the inner MB to the near-Earth region. On the basis of the orbital parameters of the NEOs presented here, both the resonances (3:1 and ν6), usually considered as the most relevant gateways for the production of near-Earth asteroids, should have been active to transfer the bodies from the MB region.  相似文献   

11.
The aim of this work is to analyze the mineralogy of the Eos family, which exhibits considerable taxonomic diversity. Its biggest fragment, (221) Eos has previously been associated, through direct spectral comparisons, with such diverse mineralogies as CV/CO and achondrite meteorites [Burbine, T.H., Binzel, R.P., Bus, S.J., Clark, B.E., 2001. Meteorit. Planet. Sci. 36, 245-253; Mothé-Diniz, T., Carvano, J.M., 2005. Astron. Astrophys. 174, 54-80]. In order to perform such analysis we obtained spectra of 30 family members in the 0.8-2.5 μm range, and used three different methods of mineralogical inference: direct spectral comparison with meteorites, intimate mixing using Hapke's theory, and fitting absorption features with the MGM. Although the direct comparison failed to yield good matches—the best candidates being R-chondrites—both mixing model and MGM analysis suggest that the bulk of the family is dominated by forsteritic (Fa∼20) olivine, with a minor component of orthopyroxene. This composition can be compatible with what would be expected from the partial differentiation of a parent-body with an original composition similar to ordinary chondrites, which probably formed and differentiated closer to the Sun than the present location of the family. A CK-like composition is also possible, from the inferred mineralogy, as well as from the similarities of the spectra in the NIR.  相似文献   

12.
An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called “optimal” because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038 Kristina, 4147 Lennon, and 5143 Heracles. Probably there are other spectrally active materials along with pyroxenes on the surfaces of these asteroids.  相似文献   

13.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

14.
To try to understand the dynamical and collisional evolution of the Hungaria asteroids we have built a large catalog of accurate synthetic proper elements. Using the distribution of the Hungaria, in the spaces of proper elements and of proper frequencies, we can study the dynamical boundaries and the internal structure of the Hungaria region, both within a purely gravitational model and also showing the signature of the non-gravitational effects. We find a complex interaction between secular resonances, mean motion resonances, chaotic behavior and Yarkovsky-driven drift in semimajor axis. We also find a rare occurrence of large scale instabilities, leading to escape from the region. This allows to explain the complex shape of a grouping which we suggest is a collisional family, including most Hungaria but by no means all; we provide an explicit list of non-members of the family. There are finer structures, of which the most significant is a set of very close asteroid couples, with extremely similar proper elements. Some of these could have had, in a comparatively recent past, very close approaches with low relative velocity. We argue that the Hungaria, because of the favorable observing conditions, may soon become the best known sub-group of the asteroid population.  相似文献   

15.
M. Lazzarin  S. Marchi  M. Di Martino 《Icarus》2004,169(2):373-384
Near-Earth objects (NEOs) represent one of the most intriguing populations of Solar System bodies. These objects appear heterogeneous in all aspects of their physical properties, like shapes, sizes, spin rates, compositions etc. Moreover, as these objects represent also a real threat to the Earth, a good knowledge of their properties and composition is the necessary first step to evaluate mitigation techniques and to understand their origin and evolution. In the last few years we have started a long-term spectroscopic investigation in the visible and near-infrared (NIR) region of near-Earth objects. The observations have been performed with the 3.5 m NTT of the European Southern Observatory of La Silla (Chile). The data presented here are a set of 24 spectra, 14 of which are both visible and NIR. We discuss the taxonomic classification of the observed NEOs, resulting in 13 S-type objects, 1 Q-type, 2 K-types, 3 C-types, 5 Xe-types (two of these, (3103) Eger and (4660) Nereus, are already known as E-types). Moreover, we discuss their links with meteorites and the possible influences of space weathering.  相似文献   

16.
We present a new classification of families identified among the population of high-inclination asteroids. We computed synthetic proper elements for a sample of 18,560 numbered and multi-opposition objects having sine of proper inclination greater than 0.295. We considered three zones at different heliocentric distances (inner, intermediate and outer region) and used the standard approach based on the Hierarchical Clustering Method (HCM) to identify families in each zone. In doing so, we used slightly different approach with respect to previously published methodologies, to achieve a more reliable and robust classification. We also used available SDSS color data to improve membership and identify likely family interlopers. We found a total of 38 families, as well as a significant number of clumps and clusters deserving further investigation.  相似文献   

17.
We report the results of the Cornell Mid-IR Asteroid Spectroscopy (MIDAS) survey, a program of ground-based observations designed to characterize the 8-13 μm spectral properties of a statistically significant sample of asteroids from a wide variety of visible to near-IR spectral classes. MIDAS is conducted at Palomar Observatory using the Spectrocam-10 (SC-10) spectrograph on the 200-in Hale telescope. We have measured the mid-infrared spectra of twenty-nine asteroids and have derived temperature estimates from our data that are largely consistent with the predictions of the standard thermal model. We have also generated relative emissivity spectra for the target asteroids. On only one asteroid, 1 Ceres, have we found emissivity features with spectral contrast greater than 5%. Our spectrum of 4 Vesta suggests emissivity variation at the 2-3% level. Published spectra of several of the small number of asteroids observed with ISO (six of which are also included in our survey), which appeared to exhibit much stronger emissivity features, are difficult to reconcile with our measurements. Laboratory work on mineral and meteorite samples has shown that the contrast of mid-IR spectral features is greatly reduced at fine grain sizes. Moreover, the NEAR mission found that 433 Eros is covered by a relatively thick fine-grained regolith. If small bodies in general possess such regoliths, their mid-IR spectral features may be quite subtle. This may explain the evident absence of strong emissivity variation in the majority of the MIDAS spectra.  相似文献   

18.
We have conducted a radar-driven observational campaign of main-belt asteroids (MBAs) focused on X/M class asteroids using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). M-type asteroids have been identified as metallic, enstatite chondrites and/or heavily altered carbonaceous chondrites [Bell, J.F., Davis, D., Hartmann, W.K., Gaffey, M.J., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 921-948; Gaffey, M.J., McCord, T.B., 1979. In: Gehrels, T., Matthews, M.S. (Eds.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723; Vilas, F., 1994. Icarus 111, 456-467]. Radar wavelength observations can determine whether an asteroid is metallic and provide information about the porosity and regolith depth. Near-infrared observations can help determine the grain size, porosity and composition of an object. Concurrent observations with these tools can give us a wealth of information about an object. Our objectives for this observation program were to (a) determine if there are any consistent relationships between spectra in the near-infrared wavelengths and radar signatures and (b) look for rotationally resolved relationships between asteroid radar properties and near-infrared spectral properties. This paper describes preliminary results of an ongoing survey of near-infrared observations of M-type asteroids and is a companion paper to radar observations reported by Shepard [Shepard, M.K., and 19 colleagues, 2008a. Icarus 195, 184-205]. In the analysis of 16 asteroid near-infrared spectra and nine radar measurements, we find a trend indicating a correlation between continuum slope from 1.7 to 2.45 μm and radar albedo—an asteroid with a steep continuum slope also has a bright radar albedo, which suggests a significant metal content. This may provide a means to use near-IR observations to predict the most likely metallic candidates for radar studies.  相似文献   

19.
R. Gil-Hutton 《Icarus》2006,183(1):93-100
A dataset of 3652 high-inclination numbered asteroids was analyzed to search for dynamical families. A fully automated multivariate data analysis technique was applied to identify the groupings. Thirteen dynamical families and twenty-two clumps were found. When taxonomic information is available, the families show cosmochemical consistency and support an interpretation based on a common origin from a single parent body. Four families and three clumps found in this work show a size distribution which is compatible with a formation due to a cratering event on the largest member of the family, and also three families have B- or related taxonomic types members, which represents a 14% of the B-types classified by Bus and Binzel [2002. Icarus 158, 146-177].  相似文献   

20.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号