首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Speckle camera of the 3.5 m Telescopio Nazionale Galileo (TNG) has been used to measure apparent sizes and shapes of a number of main belt asteroids. The average size measurements are in a generally good agreement with the results of indirect IRAS-based radiometric techniques. The measured shapes are compared with predictions based on previously derived spin axis directions and lightcurve photometry of some of the observed objects. Also in this case the agreement is reasonable and the speckle observations allow us to discriminate in some cases between the two pole solutions usually found for each object. No clear evidence of binaries was found. The results show that the TNG speckle camera can be a powerful tool to resolve relatively large main belt asteroids and to calibrate the results of the IRAS survey.  相似文献   

5.
L.A. Sromovsky  P.M. Fry  K.H. Baines 《Icarus》2003,163(1):256-261
Hubble Space Telescope (HST) observations in August 2002 show that Neptune’s disk-averaged reflectivity increased significantly since 1996, by 3.2 ± 0.3% at 467 nm, 5.6 ± 0.6% at 673 nm, and 40 ± 4% in the 850-1000 nm band, which mainly results from dramatic brightness increases in restricted latitude bands. When 467-nm HST observations from 1994 to 2002 are added to the 472-nm ground-based results of Lockwood and Thompson (2002, Icarus 56, 37-51), the combined disk-averaged variation from 1972 to 2002 is consistent with a simple seasonal model having a hemispheric response delay relative to solar forcing of ∼30 years (∼73% of a full season).  相似文献   

6.
We present color ratio curves of the S-Asteroid 15 Eunomia, which have been extracted from high-precision photometric lightcurves obtained in three different VNIR wavelength bands at the Bochum Telescope, La Silla. The measured color ratio curves and near infrared spectra were used to derive a detailed surface composition model whose shape has been computed by V-lightcurve inversions. According to this analysis, the asteroid shows on one hemisphere a higher concentration of pyroxene, which causes an increased 440/700 nm and a reduced 940/700 nm reflectance ratio as well as a pronounced 2-μm absorption band. The remaining surface shows a higher concentration of olivine, leading to a reduced 440/700 nm and slightly increased 940/700 nm color ratio. In addition, we found that the maximum of the 440/700 nm color ratio curve coincide with the minimum of the 940/700 nm color ratio curve and vice versa. We demonstrate on the basis of USGS laboratory spectra that this anti-cyclical behavior can be explained by choosing Fe-rich olivine and a pyroxene with moderate Fe content as varying mineral phases. Furthermore, our observations confirm that 15 Eunomia is an irregular elongated and at least partially differentiated body. Previous spectral investigations of several smaller fragments of the Eunomia asteroid family revealed that the amount of fragments showing an increased pyroxene content exceeds the amount of pyroxene-poor fragments (Nathues, 2000, DLR Forschungsbericht, ISSN 1434-8454). This finding together with the observation that the major fraction of Eunomia's surface is enriched in olivine let us claim that a large fraction of the original pyroxene-enriched crust layer has been lost due to a major collision that created the Eunomia asteroid family. Significant spectral evidences, consistent with high concentrations of metals have been found neither in the rotational resolved spectra of 15 Eunomia nor in its fragments. This led to the conclusion that either no core consisting mainly of metals exists or that an eventual one has not been unearthed by the impact.  相似文献   

7.
We report near-infrared observations of Prometheus and Janus taken on 9 and 13 November 2000 (UT) with the Palomar Adaptive Optics System on the 5-m Hale telescope at Palomar Observatory. Dione, Rhea, and Tethys were used as guide “stars” for the adaptive optics system, and, though they were outside the isoplanatic patch of the region of interest, they allowed significant correction of the atmospheric turbulence.Prometheus, which is usually impossible to observe from the ground due to scattered light from the A ring, was imaged at superior conjunction with Saturn. At the time of the observations, the rings of Saturn were blocked by the southern limb of the planet while the moon passed just 0.35″ below the planet’s south pole. A K filter, in a methane absorption band, was used to suppress light from the disk of the planet, and template subtraction removed much of the scattered light from the A ring. Prometheus was found to be 21.9 ± 0.1° of mean longitude behind the position predicted by Voyager-era ephemerides, consistent with the orbital lag discovered during the 1995 ring-plane crossing.  相似文献   

8.
9.
P. Pravec  A.W. Harris 《Icarus》2007,190(1):250-259
We compiled a list of estimated parameters of binary systems among asteroids from near-Earth to trojan orbits. In this paper, we describe the construction of the list, and we present results of our study of angular momentum content in binary asteroids. The most abundant binary population is that of close binary systems among near-Earth, Mars-crossing, and main belt asteroids that have a primary diameter of about 10 km or smaller. They have a total angular momentum very close to, but not generally exceeding, the critical limit for a single body in a gravity regime. This suggests that they formed from parent bodies spinning at the critical rate (at the gravity spin limit for asteroids in the size range) by some sort of fission or mass shedding. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a candidate to be the dominant source of spin-up to instability. Gravitational interactions during close approaches to the terrestrial planets cannot be a primary mechanism of formation of the binaries, but it may affect properties of the NEA part of the binary population.  相似文献   

10.
In this work we analyze the bias-corrected taxonomic distribution of asteroids in the Main Belt based on the results of two large spectroscopic surveys with a total of 2026 objects. With the goal of minimizing selection effects that could affect our results, analyses were also performed on a sample from which the dynamical families and the small objects were removed.Our results differ significantly from the majority of previous work. The most notable difference concerns the distribution in semi-major axis of the S class (and its subtypes), found to compose a significant fraction of the asteroid population out to 3.0 AU.Also, we found differences in the distribution of the classes as we considered varying ranges of eccentricities and inclinations.  相似文献   

11.
D.G. Korycansky  Erik Asphaug 《Icarus》2003,163(2):374-388
We explore whether the cumulative effect of small-scale meteoroid bombardment can drive asteroids into nonaxisymmetric shapes comparable to those of known objects (elongated prolate forms, twin-lobed binaries, etc). We simulate impact cratering as an excavation followed by the launch, orbit, and reimpact of ejecta. Orbits are determined by the gravity and rotation of the evolving asteroid, whose shape and spin change as cratering occurs repeatedly. For simplicity we consider an end-member evolution where impactors are all much smaller than the asteroid and where all ejecta remain bound. Given those assumptions, we find that cumulative small impacts on rotating asteroids lead to oblate shapes, irrespective of the chosen value for angle of repose or for initial angular momentum. The more rapidly a body is spinning, the more flattened the outcome, but oblateness prevails. Most actual asteroids, by contrast, appear spherical to prolate. We also evaluate the timescale for reshaping by small impacts and compare it to the timescale for catastrophic disruption. For all but the steepest size distributions of impactors, reshaping from small impacts takes more than an order of magnitude longer than catastrophic disruption. We conclude that small-scale cratering is probably not dominant in shaping asteroids, unless our assumptions are naive. We believe we have ruled out the end-member scenario; future modeling shall include angular momentum evolution from impacts, mass loss in the strength regime, and craters with diameters up to the disruption threshold. The ultimate goal is to find out how asteroids get their shapes and spins and whether tidal encounters in fact play a dominant role.  相似文献   

12.
13.
Narrowband reflectance spectra (0.53-1.0 μm) of Iapetus' leading and trailing sides were obtained in 2000 to test the presence of an absorption feature located near 0.67 μm seen in reflectance spectra of Iapetus' dark material and Hyperion's surface material. No feature was observed. The difference in reflectance across the UV/VIS/NIR spectral region, and the dependence of the presence or absence of this absorption feature on angular separation from the apex of Iapetus in its orbit, phase angle, and heliocentric distance (affecting temperature), were examined. A trend of increased reddening, and the presence of the absorption feature, correlate with an angular separation from the apex of ? approximately 10°. Spectral information is lost when the contribution of the bright water ice signal to the reflectance spectrum increases sufficiently. In order to optimize compositional studies of Iapetus, we encourage future ground-based and space-based spectral observations to maximize the concentration of dark material in the instrumental field of view.  相似文献   

14.
15.
In this paper, we compare the outcome of high-velocity impact experiments on porous targets, composed of pumice, with the results of simulations by a 3D SPH hydrocode in which a porosity model has been implemented. The different populations of small bodies of our Solar System are believed to be composed, at least partially, of objects with a high degree of porosity. To describe the fragmentation of such porous objects, a different model is needed than that used for non-porous bodies. In the case of porous bodies, the impact process is not only driven by the presence of cracks which propagate when a stress threshold is reached, it is also influenced by the crushing of pores and compaction. Such processes can greatly affect the whole body's response to an impact. Therefore, another physical model is necessary to improve our understanding of the collisional process involving porous bodies. Such a model has been developed recently and introduced successfully in a 3D SPH hydrocode [Jutzi, M., Benz, W., Michel, P., 2008. Icarus 198, 242-255]. Basic tests have been performed which already showed that it is implemented in a consistent way and that theoretical solutions are well reproduced. However, its full validation requires that it is also capable of reproducing the results of real laboratory impact experiments. Here we present simulations of laboratory experiments on pumice targets for which several of the main material properties have been measured. We show that using the measured material properties and keeping the remaining free parameters fixed, our numerical model is able to reproduce the outcome of these experiments carried out under different impact conditions. This first complete validation of our model, which will be tested for other porous materials in the future, allows us to start addressing problems at larger scale related to small bodies of our Solar System, such as collisions in the Kuiper Belt or the formation of a family by the disruption of a porous parent body in the main asteroid belt.  相似文献   

16.
Ralph B. Baldwin 《Icarus》2006,184(2):308-318
About 30 years ago there was a suggestion by several able scientists at the California Institute of Technology that the Moon had undergone a Terminal Lunar Cataclysm. This meant that most of the early impact cratering had been concentrated strongly at about the time of formation of the Imbrium basin. This solution was discussed in many papers and the idea of a cataclysm gradually faded away. In about 1990 it was again revived by several scientists. The idea of a Terminal Lunar Cataclysm at about the time the Imbrium basin was formed was advanced albeit in a somewhat different manner. The present paper has been written to analyze the various observations and interpretations that have been advanced to permit a cataclysm. It is concluded that the three main proposals, which, if correct, would have permitted a cataclysm to have occurred, are each faulty and not consistent with such a cataclysm. To demonstrate this conclusion it was necessary to determine absolute ages of various lunar features. This meant, in part, determinations of the existence and nature of lunar crustal viscosity consistent with times of formation of six lunar basins. The results of such studies yielded an internally consistent model which requires a long period from the original formation of the Moon at about 4.5 byr to a time slightly earlier than that of the formation of the Imbrium basin at about 3.84 byr. On this model there is no indication of a clustering of events and it is concluded that a Terminal Lunar Cataclysm never occurred.  相似文献   

17.
The steady-state population of bodies resulting from a collisional cascade depends on how material strength varies with size. We find a simple expression for the power-law index of the population, given a power law that describes how material strength varies with size. This result is extended to the case relevant for the asteroid belt and Kuiper belt, in which the material strength is described by 2 separate power laws—one for small bodies and one for larger bodies. We find that the power-law index of the small body population is unaffected by the strength law for the large bodies, and vice versa. Simple analytical expressions describe a wave that is superimposed on the large body population because of the transition between the two power laws describing the strength. These analytical results yield excellent agreement with a numerical simulation of collisional evolution. These results will help to interpret observations of the asteroids and KBOs, and constrain the strength properties of those objects.  相似文献   

18.
In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, , will decrease so that to , which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.  相似文献   

19.
J. Warell 《Icarus》2003,161(2):199-222
Disk-resolved reflectance spectra of the surface of Mercury (longitudes 240-300°), obtained in the visual (vis) and near-infrared (NIR) spectral region, are presented and analyzed. The observations were made at the 2.6-m Nordic Optical Telescope with the ALFOSC low-resolution spectrograph on 20 and 22 June 1999 in the wavelength range 520-970 nm with a footprint size of 700 km on the mid-disk of Mercury. A method which enables more accurate correction for telluric line absorptions and atmospheric extinction than that applied on previously published vis-NIR spectra of Mercury is introduced. The resulting reflectance spectra are remarkably linear, lack significant absorption features, and have optical slopes comparable to remotely sensed lunar pure anorthosites. The relation between spectral slope and photometric geometry found by Warell (2002, Icarus 156, 313-317) is confirmed and is explained as caused by strongly backscattering particles with embedded submicroscopic metallic iron in a mature regolith. With the theoretical maturation model of Hapke (2001, J. Geophys. Res. 106 (E5), 10039-10073) an abundance of 0.05-0.3 wt% submicroscopic metallic iron in the regolith for silicate grain sizes in the range 10-80 μm is determined, implying a ferrous iron content in mafic minerals intrinsically lower than that of the lunar highlands. A binary crustal composition model with anorthite linearly mixed with pyroxene provides better spectral fits than a pure anorthitic composition. Comparison with mature lunar pure anorthosite spectra yields a confident upper limit to the FeO content of 3 wt% under the assumption that the surfaces are similarly matured, but this figure probably represents a considerable overestimate. The average mercurian regolith does not seem to be substantially more weathered than the most mature lunar highland soils in terms of abundance of submicroscopic metallic iron, indicating that a steady-state maturation level has been reached. However, the strong relation between optical spectral slope and photometric geometry may imply that the majority of regolith particles are more fine-grained than their lunar counterparts and that the regolith is admixed with complex agglutinate weathering products which are more abundant and more transparent than those of the lunar highlands. This is consistent with more energetic impacts and a higher rate of impact melt production in an iron-poor regolith. An observed relation between the spectral slope and latitude provides evidence that the Ostwald ripening process may be operating at equatorial latitudes on Mercury.  相似文献   

20.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号