首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Infrared observations of comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) benefited from the high spectral resolution and sensitivity of échelle spectrometers now equipping ground-based telescopes and from the availability of the Infrared Space Observatory (ISO). From the ground, several hydrocarbons were unambiguously detected for the first time: CH4, C2H2, C2H6. Water was observed through several of its hot vibrational bands, escaping telluric absorption. CO, HCN, NH3 and OCS were also observed, as well as several radicals. This permitted the evaluation of molecular production rates, of rotational temperature, and — taking advantage of the 1-D imaging of long-slit spectroscopy — of the space distribution of these species. With ISO, carbon dioxide was directly observed for the second time in a comet (after its detection from the Vega probes in P/Halley). The spectrum of water was investigated in detail (several bands of vibration and far-infrared rotational lines), permitting the evaluation of the rotational temperature of water, and of it spin temperature from the ortho-to-para ratio. Water ice was identified in the grains of Hale-Bopp as far as 7 AU from the ground and possibly at 3 AU with ISO. The composition of cometary volatiles appears to be strikingly similar to that of interstellar ices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We show results for some new bands of C2, CN, N2 +, CO+, NH, OH, and CH hitherto unidentified, but expected to be present in the spectrum of comets by the analysis of Franck-Condon factors. Vibrational transition probabilities, Franck-Condon factors have been evaluated by an approxximate analytical method for the A-X system of C2, A-X, and B-X systems of CN, B-X system of N2 +, A-X, and B-A systems of CO + , A-X system of NH and A–X system of OH.  相似文献   

3.
Mount  George H.  Linsky  Jeffrey L. 《Solar physics》1974,35(2):259-276
We have obtained center-to-limb photoelectric spectra of the CN(1,1) B-X bandhead region λ3868–3872 Å at Kitt Peak National Observatory. From these spectra and a detailed analysis of the formation of the CN (1, 1) spectrum we derive a best-fit upper photospheric model differing from the HSRA which is consistent with our previous CN(0, 0) λ3883 spectra. We derive a solar carbon abundance of log A c = 8.30 ± 0.10 compared to the HSRA value of log A c = 8.55 ± 0.10. In addition we specify the regions of formation for the CN(0, 0) λ3883.35 and CN(1, 1) λ 3871.38 bandheads at disc center and limb.  相似文献   

4.
To settle the question of disulfur monoxide and sulfur monoxide deposition and occurrence on Io's surface, we performed series of laboratory experiments reproducing the condensation of S2O at low temperature. Its polymerization has been monitored by recording infrared spectra under conditions of temperature, pressure, mixing with SO2 and UV-visible radiation simulating that of Io's surface. Our experiments show that S2O condensates are not chemically stable under ionian conditions. We also demonstrate that SO and S2O outgassed by Io's volcanoes and condensing on Io's surface should lead to yellow polysulfuroxide deposits or to white deposits of S2O diluted in sulfur dioxide frost (i.e., S2O/SO2 < 0.1%). Thus S2O condensation cannot be responsible for the red volcanic deposits on Io. Comparison of the laboratory infrared spectra of S2O and polysulfuroxide with NIMS/Galileo infrared spectra of Io's surface leads us to discuss the possible identification of polysulfuroxide. We also recorded the visible transmission spectra of sulfur samples resulting from polysulfuroxide decomposition. These samples consist in a mixture of sulfur polymer and orthorhombic sulfur. Using the optical constants extracted from these measurements, we show that a linear combination of the reflectance spectra of our samples, the reflectance spectrum of orthorhombic S8 sulfur and SO2 reflectance spectrum, leads to a very good matching of Io's visible spectrum between 330 and 520 nm. We conclude then that Io's surface is probably mainly composed of sulfur dioxide and a mixture of sulfur S8 and sulfur polymer. Some polysulfuroxide could also co-exist with these dominant components, but is probably restricted to some volcanic areas.  相似文献   

5.
Leech  K.  Crovisier  J.  Bockelée-Morvan  D.  Brooke  T. Y.  Hanner  M. S.  Altieri  B.  Keller  H. U.  Lellouch  E.  Lim  T. 《Earth, Moon, and Planets》1997,78(1-3):81-83
Spectra of comet C/1995 O1 (Hale-Bopp) were obtained with the Infrared Space Observatory (ISO) at medium resolution with the grating spectrometer in the photometer (PHT-S) and/or at high resolution with the short wavelength spectrometer (SWS) and long wavelength spectrometer (LWS) in April 1996 (Crovisier et al., 1996), September–October 1996 (Crovisier et al., 1997a, b) and December 1997, at distances from the Sun of 4.6, 2.9 and 3.9 AU, respectively. For the first time, high-resolution spectra of a comet covering the entire 2.4 to 200 μm spectral range were obtained. The vibrational bands of H2O, CO2 and CO are detected in emission with PHT-S. Relative production rates of 100:22:70 are derived for H2O:CO2:CO at 3 AU pre-perihelion. H2O is observed at high spectral resolution in the ν3 group of bands around 2.7 μm and the ν2 group around 6 μm with SWS, and in several rotational lines in the 100–180 μm region with LWS. The high signal-to-noise ratio of the ν3 band observed on September–October 1996 allows accurate determinations of the water rotational temperature (28 K) and of its ortho-to-para ratio(2.45 ± 0.10, which significantly differs from the high temperature limit and corresponds to a spin temperature of 25 K). Longward of 6 μm the spectrum is dominated by dust thermal continuum emission, upon which broad emission features are superimposed. The wavelengths of the emission peaks correspond to those of Mg-rich crystalline olivine (forsterite). In the September–October 1996 spectra, emission features at 45 and 65 μm and possible absorption at 2.9–3.2 μm suggest that grains of water ice were present at 3 AU from the Sun. The observations made post-perihelion in late December 1997 led to the detections of H2O, CO2 and CO at 3.9 AU from the Sun (Figures 1 and 2). The production rates were ≈3.0 × 1028,3.5 × 1028 and ≈1.5 × 1029 s-1, respectively. This corresponds to H2O:CO2:CO = 100:110:500 and confirms that at such distances from the Sun, cometary activity is dominated by sublimation of CO and CO2 rather than by H2O. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The apparition of Comet C/1996 B2 (Hyakutake) offered an unexpected and rare opportunity to probe the inner atmosphere of a comet with high spatial resolution and to investigate with unprecedented sensitivity its chemical composition. We present observations of over 30 submillimeter transitions of HCN, H13CN, HNC, HNCO, CO, CH3OH, and H2CO in Comet Hyakutake carried out between 1996 March 18 and April 9 at the Caltech Submillimeter Observatory. Detections of the H13CN (4–3) and HNCO (160,16–150,15) transitions represent the first observations of these species in a comet. In addition, several other transitions, including HCN (8–7), CO (4–3), and CO (6–5) are detected for the first time in a comet as is the hyperfine structure of the HCN (4–3) line. The observed intensities of the HCN (4–3) hyperfine components indicate a line center optical depth of 0.9 ± 0.2 on March 22.5 UT. The HCN/HNC abundance ratio in Comet Hyakutake at a heliocentric distance of 1 AU is similar to that measured in the Orion extended ridge— a warm, quiescent molecular cloud. The HCN/H13CN abundance ratio implied by our observations is 34 ± 12, similar to that measured in giant molecular clouds in the galactic disk but significantly lower than the Solar System12C/13C ratio. The low HCN/H13CN abundance ratio may be in part due to contamination by an SO2line blended with the H13CN (4–3) line. In addition, chemical models suggest that the HCN/H13CN ratio can be affected by fractionation during the collapse phase of the protosolar nebula; hence a low HCN/H13CN ratio observed in a comet is not inconsistent with the solar system12C/13C isotopic ratio. The abundance of HNCO relative to water derived from our observations is (7 ± 3) × 10−4. The HCN/HNCO abundance ratio is similar to that measured in the core of Sagittarius B2 molecular cloud. Although a photo-dissociative channel of HNCO leads to CO, the CO produced by HNCO is a negligible component of cometary atmospheres. Production rates of HCN, CO, H2CO, and CH3OH are presented. Inferred molecular abundances relative to water are typical of those measured in comets at 1 AU from the Sun. The exception is CO, for which we derive a large relative abundance of 30%. The evolution of the HCN production rate between March 20 and March 30 suggests that the increased activity of the comet was the cause of the fragmentation of the nucleus. The time evolution of the H2CO emission suggests production of this species from dust grains.  相似文献   

7.
A spectrophotometric observational study of the Galilean satellites and Titan was carried out at 0.004-μm (40-Å) resolution over the spectral range 0.32 to 0.86 μm. A standard lunar area was used as a primary spectroscopic standard to establish the relative reflection spectra of the objects by ratioing the sky-corrected satellite spectra to the standard area on the Moon. J1 (Io) is found to have a spectral edge at 0.33 μm that has not been previously reported. The increase in reflectivity from 0.4 to 0.5 μm and the band at 0.56 μm are confirmed. A weak band at 0.56 μm is probable on J2 (Europa) and possible on J3 (Ganymede). J4 (Callisto) shows no spectral features that have not been previously reported. On Titan, no temporal variations in the methane bands greater than 2% were found, indicating that the effective path length in the Titan atmosphere did not change over the 3-month period of this study. A new absorption band of methane at 0.68 μm was found on Titan. We propose an extension of the evaporite model of Fanale et al. (1974, 1977) and the sulfur mixing models of Wamsteker et al. (1974) in which the primary constituent of the surface of J1 is elemental sulfur sublimated onto the surface by photodissociation of hydrogen sulfide outgassing from the interior. The sulfur is continually renewed by sublimation, sputtering, and redeposition. At low temperatures irradiation produces stable S2, S3, S4, S6, and long chain polymers. Some of these allotropes have an edge at 0.33 μm, a rising reflectance between 0.4 and 0.5 μm a band at 0.56 μm. All of these features are found in the spectrum of J1. We conclude that the lunar ratioing technique used in this study is well suited for determining the relative reflection spectra of solar system objects.  相似文献   

8.
Sekiguchi  T.  Watanabe  J.  Fukushima  H.  Yamamoto  T.  Yamamoto  N. 《Earth, Moon, and Planets》1997,78(1-3):143-148
In order to monitor the various phenomena of comets, we continuously made the near-nucleus imaging observations of comets at National Astronomical Observatory, Mitaka. Here we report on the results of the observations of two spectacular comets. One is the analysis of photometry of C2 emission images in the coma of comet Hyakutake (C/1996 B2). By comparing the production rates of C2 radicals with C2H2 molecules, we conclude that the most C2 radicals were originated from C2H2, while some of them might be produced from other parents. The second item is the analysis of the morphology of C2 emission images in the coma of comet Hale-Bopp(C/1995 O1). By applying a ring masking technique, we detected asymmetrical distribution of the C2 molecules. The results of these two comets might suggest that a portion of C2 radicals were formed by the disintegration of the small organic dust grains, like the so-called CHON particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions from OI, OII, NI, CI and CII and CO have been identified and their disc average intensity has been determined. They are generally somewhat brighter than those determined from the observations made with the HUT spectrograph at a lower activity level, We present the brightness distribution along the foot track of the UVIS slit of the OII 83.4 nm, OI 98.9 nm, Lyman-ß + OI 102.5 nm and NI 120.0 nm multiplets, and the CO C-X and B-X Hopfield-Birge bands. We make a detailed comparison of the intensities of the 834 nm, 989 nm, 120.0 nm multiplets and CO B-X band measured along the slit foot track on the disc with those predicted by an airglow model previously used to analyze Venus and Mars ultraviolet spectra. This model includes the treatment of multiple scattering for the optically thick OI, OII and NI multiplets. It is found that the observed intensity of the OII emission at 83.4 nm is higher than predicted by the model. An increase of the O+ ion density relative to the densities usually measured by Pioneer Venus brings the observations and the modeled values into better agreement. The calculated intensity variation of the CO B-X emission along the track of the UVIS slit is in fair agreement with the observations. The intensity of the OI 98.9 nm emission is well predicted by the model if resonance scattering of solar radiation by O atoms is included as a source. The calculated brightness of the NI 120 nm multiplet is larger than observed by a factor of ∼2-3 if photons from all sources encounter multiple scattering. The discrepancy reduces to 30-80% if the photon electron impact and photodissociation of N2 sources of N(4S) atoms are considered as optically thin. Overall, we find that the O, N2 and CO densities from the empirical VTS3 model provide satisfactory agreement between the calculated and the observed EUV airglow emissions.  相似文献   

10.
We have constructed a grid of model atmospheres for cool dwarf stars and brown dwarfs with Teff ≤ 3000 K that includes (i) an equation of state which accounts for over 600 gas phase species and 1000 liquids and solids, and (ii) the opacities of corundum (Al2O3), iron, enstatite (MgSiO3) and forsterite (Mg2SiO4), as well as amorphous carbon and SiC. We confirm earlier findings of Tsuji, Ohnaka & Aoki (1996a) that grains are abundant in the outer photospheric layers of red and brown dwarfs with spectral type later than M8. We identify high temperature condensates including perovskite (CaTiO3) that depletes the photospheres of important absorbers including TiO, and we confirm the disappearance of TiO bands in the observed spectra of cool dwarfs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
We present high signal precision optical reflectance spectra of 2005 FY9 taken with the Red Channel Spectrograph and the 6.5-m MMT telescope on 2006 March 4 UT (5000-9500 Å; 6.33 Å pixel−1) and 2007 February 12 UT (6600-8500 Å; 1.93 Å pixel−1). From cross-correlation experiments between the 2006 March 4 spectrum and a pure CH4-ice Hapke model, we find the CH4-ice bands in the MMT spectrum are blueshifted by 3 ± 4 Å relative to bands in the pure CH4-ice Hapke spectrum. The higher resolution MMT spectrum of 2007 February 12 UT enabled us to measure shifts of individual CH4-ice bands. We find the 7296, 7862, and 7993 Å CH4-ice bands are blueshifted by 4 ± 2, 4 ± 4, and 6 ± 5 Å. From four measurements we report here and one of our previously published measurements, we find the CH4-ice bands are shifted by 4 ± 1 Å. This small shift is important because it suggest the presence of another ice component on the surface of 2005 FY9. Laboratory experiments show that CH4-ice bands in spectra of CH4 mixed with other ices are blueshifted relative to bands in spectra of pure CH4-ice. A likely candidate for the other component is N2-ice because its weak 2.15 μm band and blueshifted CH4 bands are seen in spectra of Triton and Pluto. Assuming the shift is due to the presence of N2, spectra taken on two consecutive nights show no difference in CH4/N2. In addition, we find no measurable difference in CH4/N2 at different depths into the surface of 2005 FY9.  相似文献   

12.
E.L. Gibb  M.J. Mumma  M.A. DiSanti 《Icarus》2003,165(2):391-406
We detected CH4 in eight Oort cloud comets using high-dispersion (λλ∼2×104) infrared spectra acquired with CSHELL at NASA's IRTF and NIRSPEC at the W.M. Keck Observatory. The observed comets were C/1995 O1 (Hale-Bopp), C/1996 B2 (Hyakutake), C/1999 H1 (Lee), C/1999 T1 (McNaught-Hartley), C/1999 S4 (LINEAR), C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), and 153/P Ikeya-Zhang (C/2002 C1). We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm in each comet, with the exception of McNaught-Hartley where only the R0 line was measured. In order to obtain production rates, a fluorescence model has been developed for this band of CH4. We report g-factors for the R0 and R1 transitions at several rotational temperatures typically found in comet comae and relevant to our observations. Using g-factors appropriate to Trot as determined from HCN, CO and/or H2O and C2H6, CH4 production rates and mixing ratios are presented. Abundances of CH4/H2O are compared among our existing sample of comets, in the context of establishing their place of origin. In addition, CH4 is compared to native CO, another hypervolatile species, and no correlation is found among the comets observed.  相似文献   

13.
《Icarus》1987,70(1):111-123
Measurements of total yields, temperature dependences, mass spectra, and energy spectra of molecules sputtered from condensed sulfur (S8) at low temperatures by keV ions are reported and results are given for Jovian plasma ion bombardment of Io. A change in the reflectance of the sulfur, which can be removed by annealing, is produced by the most penetrating ions and may be connected with the darker, colder polar regions on Io. The measured sputtering yields are much lower than those estimated earlier for room temperature sulfur films but are comparable to previous measurements of keV ion sputtering of SO2 at low temperatures. The corrected mass spectrum indicates that ≈66% of the total yield corresponds to S2 ejection while only 5 and 16% correspond to S and S3, respectively. Therefore, if ions reach the surface of Io its atmosphere will have a non-negligible sulfur component of primarily S2. The ejection of S and S2 is temperature independent for temperatures characteristic of most of the surface of Io. The energy spectrum for S has an approximate 1/E2 dependence at high ejection energies, whereas S2 and S3 fall off more rapidly. Assuming 50% coverage of both sulfur and SO2 and a thin atmosphere (e.g., nightside and polar region) the direct sputter injection of sulfur atoms and molecules into the Jovian plasma torus and the indirect injection due to coronal processes are estimated. These injection rates for sulfur are compared to those for SO2 showing that injection from sulfur deposits contributes 13% to the total mass injection rate of ∼2–3 × 1029 amu/sec.  相似文献   

14.
New spectra of Jupiter in the region 0.93–1.63 are presented. Laboratory comparisons of spectra of NH3 and CH4 permit estimates of the absorbing pathlength for various bands of these two gases. Abundances in a single transmission through the Jupiter atmosphere, above the mean reflecting level, vary from 10 to 100 m-atm for CH4 and from 0.2–5 m-atm for NH3, depending on the bands considered. Upper limits for other gases are derived from new laboratory spectra and comparison with the Jupiter spectra presented herein. These are as follows: C2H2<2 m-atm, H2S<0.25 m-atm, HCN<0.05 m-atm, CH3NH2<0.02 m-atm. A table summarizing the chemical composition of Jupiter's atmosphere is presented.  相似文献   

15.
At present, there are few laboratory spectra of analogs of astrophysical interest in the far-infrared range (FIR). Laboratory infrared (IR) spectra of simple ices and its mixtures obtained at low temperature and pressure are found mainly up to 25 μm, and few up to 200 μm. On the other hand, there are some spectra for carbonaceous material and silicates up to 2000 μm. Our laboratory is equipped with an IR spectrometer that integrates a Michelson interferometer with a resolution better than 0.25 cm−1 and that operates under vacuum conditions of 10−1 mbar. There is also a silicon bolometer, a very high-sensitivity detector in comparison with the standard deuterated triglycine sulfate (DTGS) detectors. The use of the bolometer and the possibility of working under vacuum conditions inside the optics and the sample compartment of the spectrometer allow obtaining high-sensitivity spectra free from H2O vapor and CO2 gas bands. Those conditions are necessary to obtain high-quality spectra in the FIR where absorption bands are much less intense than those in the mid-IR region. In our laboratory there is also a high-vacuum chamber that allows different studies on ices deposited onto a cold finger. We have already carried out experiments on the study of ice density as a function of temperature, UV irradiation of ices, temperature-programmed desorption (TPD) and UV-vis reflectance. In this work, we present the design of the experimental setup we are building to carry out different experiments simultaneously on the same ice sample, including spectra measurements in the mid-IR range (MIR) and the FIR. This design integrates jointly the IR spectrometer, the high-vacuum chamber and the silicon bolometer. Lastly, we show a spectrum we have obtained of a solid of astrophysical interest such as crystalline forsterite grains by using the polyethylene pellet technique.  相似文献   

16.
Using new laboratory spectra, we have calculated the real and imaginary parts of the index of refraction of amorphous and crystalline H2O-ice from 20 to 150 K in the frequency range 9000-3800 cm−1 (1.1-2.6 μm) at a spectral resolution of 1 cm−1. These optical constants can be used to create model spectra for comparison to spectra from Solar System objects. We also analyzed the differences between the amorphous and crystalline H2O-ice spectra, including weakening of bands and shifting of bands to shorter wavelength in amorphous H2O-ice spectra. We have also observed two spectrally distinct phases of amorphous H2O-ice.  相似文献   

17.
We present a preliminary analysis of medium resolution optical spectra of comet C/2000 WM1 (LINEAR) obtained on 22 November 2001. Theemission lines of the molecules C2, C3, CN, NH2,H2O+ and presumably CO (Asundi and triplet bands) and C2 -were identified in these spectra. By analysing the brightnessdistributions of the C2, C3, CN emission lines along theslit of the spectrograph we determined some physical parameters of theseneutrals, such as their lifetimes and expansion velocities inthe coma. The Franck–Condon factors for the CO Asundi bands and C2 - bands were calculated using a Morse potential model.  相似文献   

18.
We present 0.8-2.4 μm spectral observations of uranian satellites, obtained at IRTF/SpeX on 17 nights during 2001-2005. The spectra reveal for the first time the presence of CO2 ice on the surfaces of Umbriel and Titania, by means of 3 narrow absorption bands near 2 μm. Several additional, weaker CO2 ice absorptions have also been detected. No CO2 absorption is seen in Oberon spectra, and the strengths of the CO2 ice bands decline with planetocentric distance from Ariel through Titania. We use the CO2 absorptions to map the longitudinal distribution of CO2 ice on Ariel, Umbriel, and Titania, showing that it is most abundant on their trailing hemispheres. We also examine H2O ice absorptions in the spectra, finding deeper H2O bands on the leading hemispheres of Ariel, Umbriel, and Titania, but the opposite pattern on Oberon. Potential mechanisms to produce the observed longitudinal and planetocentric distributions of the two ices are considered.  相似文献   

19.
The observations of Mars by the CRISM and OMEGA hyperspectral imaging spectrometers require correction for photometric, atmospheric and thermal effects prior to the interpretation of possible mineralogical features in the spectra. Here, we report on a simple, yet non-trivial, adaptation to the commonly-used volcano-scan correction technique for atmospheric CO2, which allows for the improved detection of minerals with intrinsic absorption bands at wavelengths between 1.9 and 2.1 μm. This volcano-scan technique removes the absorption bands of CO2 by ensuring that the Lambert albedo is the same at two wavelengths: 1.890 and 2.011 μm, with the first wavelength outside the CO2 gas bands and the second wavelength deep inside the CO2 gas bands. Our adaptation to the volcano-scan technique moves the first wavelength from 1.890 μm to be instead within the gas bands at 1.980 μm, and for CRISM data, our adaptation shifts the second wavelength slightly, to 2.007 μm. We also report on our efforts to account for a slight ∼0.001 μm shift in wavelengths due to thermal effects in the CRISM instrument.  相似文献   

20.
Narrowband filter photometry observations of Comet Hyakutake (1996 B2) were used to investigate this comet's short-term variability as well as its behavior for the apparition as a whole. Utilizing measurements obtained on a total of 13 nights between February 9, 1996, and April 14, 1996, we find that the heliocentric distance (rH) dependence of the production rates of OH and NH were much shallower than those for either the carbon-bearing species or the visible dust. Based on the OH measurements, the derived water rH-dependence was also significantly less steep than expected from a basic water vaporization model and required an effective active surface area of about 29 km2 at rH=1.8 AU, 16 km2 at rH=1 AU, and only 13 km2 at rH=0.6 AU. This decrease in active area may be due to seasonally induced variations of a heterogeneous surface, or due to a decreasing contribution of gas from icy grains in the innermost coma. The relative abundances of the minor gas species place Hyakutake into the “typical” category of comets in the A'Hearn et al. (1995, Icarus118, 223-270) taxonomic classification system. The spectrum is generally redder at shorter wavelengths throughout the apparition; however, the dust color progressively changes from being significantly reddened (37%/1000 Å) at large rH to near-solar at small rH. This change of color with distance implies a significant change in grain sizes or a changing proportion between two or more grain populations.A major outburst was initiated near March 19.9, just prior to the comet's close approach to Earth. The characteristic recovery from the outburst differed among the observed species, with OH recovering most rapidly, essentially returning to its baseline values by March 25. The spatial radial fall-off of OH throughout this interval was consistent with the expected nominal spatial distribution, while CN and C2 displayed fall-offs consistent with a distributed source, and the dust fall-off was significantly less steep than 1/ρ, possibly due to fragmenting grains. Rotational lightcurve amplitudes were largest for the OH, NH, and dust, again consistent with the carbon-bearing species primarily originating from a distributed source. Significant variations were observed in the lightcurve amplitude and phase shifts as functions of aperture size. Finally, a refined value for the rotation period of 0.2614±0.0003 day was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号