首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2007, the M-type binary Asteroid 22 Kalliope reached one of its annual equinoxes. As a consequence, the orbit plane of its small moon, Linus, was aligned closely to the Sun's line of sight, giving rise to a mutual eclipse season. A dedicated international campaign of photometric observations, based on amateur-professional collaboration, was organized and coordinated by the IMCCE in order to catch several of these events. The set of the compiled observations is released in this work. We developed a relevant model of these events, including a topographic shape model of Kalliope refined in the present work, the orbit solution of Linus as well as the photometric effect of the shadow of one component falling on the other. By fitting this model to the only two full recorded events, we derived a new estimation of the equivalent diameter of Kalliope of 166.2±2.8 km, 8% smaller than its IRAS diameter. As to the diameter of Linus, considered as purely spherical, it is estimated to 28±2 km. This substantial “shortening” of Kalliope, gives a bulk density of 3.35±0.33 g/cm3, significantly higher than past determinations but more consistent with its taxonomic type. Some constraints can be inferred on the composition.  相似文献   

2.
In 2003, we initiated a long-term Adaptive Optics campaign to study the orbit of various main-belt asteroidal systems. Here we present a consistent solution for the mutual orbits of four binary systems: 22 Kalliope, 45 Eugenia, 107 Camilla and 762 Pulcova. With the exception of 45 Eugenia, we did not detect any additional satellites around these systems although we have the capability of detecting a loosely-bound fragment (located at 1/4×RHill) that is ∼40 times smaller in diameter than the primary. The common characteristic of these mutual orbits is that they are roughly circular. Three of these binary systems belong to a C-“group” taxonomic class. Our estimates of their bulk densities are consistently lower (∼1 g/cm3) than their associated meteorite analogs, suggesting an interior porosity of 30-50% (taking CI-CO meteorites as analogs). 22 Kalliope, a W-type asteroid, has a significantly higher bulk density of ∼3 g/cm3, derived based on IRAS radiometric size measurement. We compare the characteristics of these orbits in the light of tidal-effect evolution.  相似文献   

3.
We report on the results of a 6-month photometric study of the main-belt binary C-type Asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermione’s physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis, et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005. Icarus 178, 450-464]. A new effective diameter of 187 ± 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 + 0.5/−0.2 g cm−3. We infer a macroscopic porosity of ∼33 + 5/−20%.  相似文献   

4.
Radar echoes from Earth co-orbital Asteroid 2002 AA29 yield a total-power radar cross section of 2.9×10−5 km2 ±25%, a circular polarization ratio of SC/OC=0.26±0.07, and an echo bandwidth of at least 1.5 Hz. Combining these results with the estimate of its visual absolute magnitude, HV=25.23±0.24, from reported Spacewatch photometry indicates an effective diameter of 25±5 m, a rotation period no longer than 33 min, and an average surface bulk density no larger than 2.0 g cm−3; the asteroid is radar dark and optically bright, and its statistically most likely spectral class is S. The HV estimate from LINEAR photometry (23.58±0.38) is not compatible with either Spacewatch's HV or our radar results. If a bias this large were generally present in LINEAR's estimates of HV for asteroids it has discovered or observed, then estimates of the current completeness of the Spaceguard Survey would have to be revised downward.  相似文献   

5.
We observed near-Earth Asteroid (NEA) 2002 CE26 in August and September 2004 using the Arecibo S-band (2380-MHz, 12.6-cm) radar and NASA's Infrared Telescope Facility (IRTF). Shape models obtained based on inversion of our delay-Doppler images show the asteroid to be 3.5±0.4 km in diameter and spheroidal; our corresponding nominal estimates of its visual and radar albedos are 0.07 and 0.24, respectively. Our IRTF spectrum shows the asteroid to be C-class with no evidence of hydration. Thermal models from the IRTF data provide a size and visual albedo consistent with the radar-derived estimate. We estimate the spin-pole to be within a few tens of degrees of λ=317°, β=−20°. Our radar observations reveal a secondary approximately 0.3 km in diameter, giving this binary one of the largest size differentials of any known NEA. The secondary is in a near-circular orbit with period 15.6±0.1 h and a semi-major axis of 4.7±0.2 km. Estimates of the binary orbital pole and secondary rotation rate are consistent with the secondary being in a spin-locked equatorial orbit. The orbit corresponds to a primary mass of M=1.95±0.25×1013 kg, leading to a primary bulk density of , one of the lowest values yet measured for a main-belt or near-Earth asteroid.  相似文献   

6.
A. Carbognani 《Icarus》2011,211(1):519-527
A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively DC = 44 ± 2 km and DS = 30 ± 1 km. The ratio between these estimated transition diameters, DC/DS = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out.In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid “asymmetry surface factor”, has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρS/ρC ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm−3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.  相似文献   

7.
We present observations of the Centaur (32532) 2001 PT13 taken between September 2000 and December 2000. A multi-wavelength lightcurve was assembled from V-, R- and J-band photometry measurements. Analysis of the lightcurve indicates that there are two peaks of slightly different brightness, a rotation period of 0.34741±0.00005 day, and a maximum photometric range of 0.18 mag. We obtained VRJHK colors (V-R=0.50±0.01, V-J=1.69±0.02, V-H=2.19±0.04, and V-K=2.30±0.04) that are consistent with the grey KBO/Centaur population. The V-R color shows no variation as a function of rotational phase; however, we cannot exclude the possibility that rotational variations are present in the R-J color. Assuming a 4% albedo, we estimate that 2001 PT13 has an effective diameter of 90 km and a minimum axial ratio a/b of 1.18. We find no evidence of a coma and place an upper limit of 15 g s−1 on the dust production rate.  相似文献   

8.
There are approximately 5000 known asteroids in the Hungaria orbital space, a region defined by orbits with high inclination (16° < i < 34°), low eccentricities (e < 0.18), and semi-major axes 1.78 < a < 2.0 AU. We argue that this region is populated by a large number of asteroids formed after a catastrophic collision involving (434) Hungaria, the presumptive largest fragment of the Hungaria collisional family. The remaining objects form a background population that share orbital characteristics with the family members. Due to the general dynamic stability of the region, it is likely that most asteroids in Hungaria space (the Hungaria “group”) have been in this region since the formation of the Solar System or at least since the planets assumed their current orbital configuration. Our examination of the Hungaria group included comparing rotation rates, taxonomic classification, and orbital dynamics to determine the characteristics of the family and background populations. We first found there is an excess of slow rotators among the group but, otherwise, the distribution of spin frequencies is essentially uniform, i.e., that a plot of the cumulative number of objects over the range of 1 d−1 < f < 9 d−1 is nearly a straight line or, put another way, if the distribution over the range is binned by equal intervals of f (1-2 d−1, 2-3 d−1, etc.), the number of objects in each bin is statistically the same.There is a distinct family within the Hungaria group, centered at a semi-major axis of 1.940 AU, with a dispersion range that increases with decreasing size of members, as expected of an evolved collisional family. The larger members with well-determined taxonomic class, including (434) Hungaria itself, have flat spectra, mostly likely type E or similar. The degree of spreading versus size of family members is consistent with that expected from Yarkovsky thermal drift in roughly 0.5 Gyr, suggesting that age for the family. The Asteroid (434) Hungaria is displaced in semi-major axis by 0.004 AU from the center of the Hungaria family. The collision event that produced the family should not have left the largest body displaced by more than 0.001 AU from the original orbit, thus we infer that the displacement of (434) Hungaria is mainly due to Yarkovsky drift, and is consistent with the expected drift for that size body in ∼0.5 Gyr. Below ∼1.93 AU heliocentric distance the Hungaria family is perturbed by at least two secular resonances, 2g − g5 − g6 and one of the family of 4th or 6th order secular resonances near s ∼ −22.25 ″/year. Their combined effect results in larger inclination dispersion of the family members.  相似文献   

9.
We performed a complete wavelet analysis of Saturn’s C ring on 62 stellar occultation profiles. These profiles were obtained by Cassini’s Ultraviolet Imaging Spectrograph High Speed Photometer. We used a WWZ wavelet power transform to analyze them. With a co-adding process, we found evidence of 40 wavelike structures, 18 of which are reported here for the first time. Seventeen of these appear to be propagating waves (wavelength changing systematically with distance from Saturn). The longest new wavetrain in the C ring is a 52-km-long wave in a plateau at 86,397 km. We produced a complete map of resonances with external satellites and possible structures rotating with Saturn’s rotation period up to the eighth order, allowing us to associate a previously observed wave with the Atlas 2:1 inner Lindblad resonance (ILR) and newly detected waves with the Mimas 6:2 ILR and the Pandora 4:2 ILR. We derived surface mass densities and mass extinction coefficients, finding σ = 0.22(±0.03) g cm−2 for the Atlas 2:1 ILR, σ = 1.31(±0.20) g cm−2 for the Mimas 6:2 ILR, and σ = 1.42(±0.21) g cm−2 for the Pandora 4:2 ILR. We determined a range of mass extinction coefficients (κ = τ/σ) for the waves associated with resonances with κ = 0.13 (±0.03) to 0.28(±0.06) cm2 g−1, where τ is the optical depth. These values are higher than the reported values for the A ring (0.01-0.02 cm2 g−1) and the Cassini Division (0.07-0.12 cm2 g−1 from Colwell et al. (Colwell, J.E., Cooney, J.H., Esposito, L.W., Srem?evi?, M. [2009]. Icarus 200, 574-580)). We also note that the mass extinction coefficient is probably not constant across the C ring (in contrast to the A ring and the Cassini Division): it is systematically higher in the plateaus than elsewhere, suggesting smaller particles in the plateaus. We present the results of our analysis of these waves in the C ring and estimate the mass of the C ring to be between3.7(±0.9) × 1016 kg and 7.9(±2.0) × 1016 kg (equivalent to an icy satellite of radius between 28.0(±2.3) km and 36.2(±3.0) km with a density of 400 kg m−3, close to that of Pan or Atlas). Using the ring viscosity derived from the wave damping length, we also estimate the vertical thickness of the C ring between 1.9(±0.4) m and 5.6(±1.4) m, comparable to the vertical thickness of the Cassini Division.  相似文献   

10.
Matija ?uk  Joseph A. Burns 《Icarus》2005,176(2):418-431
The Yarkovsky force, produced when thermal radiation is re-emitted asymmetrically, causes significant orbital evolution of asteroids in the 10 m-10 km size range. When acting on a non-spherical body, the momentum carried by this radiation generally produces a torque, called the YORP effect, which may be important in re-orienting asteroidal spins. Here we explore a related effect, the “binary YORP” (BYORP), that can modify the orbit of a synchronously rotating secondary in a binary system. It arises because a locked secondary is effectively an asymmetric appendage of the primary. It should be particularly important for Near-Earth Asteroids (NEAs) owing to their small sizes, proximity to the Sun, and benign collisional environment. To estimate BYORP's strength, we subjected 100 random Gaussian spheroids to the thermal radiation model of Rubincam (2000, Radiative spin-up and spin-down of small asteroids, Icarus, 148, 2-11). For most shapes, a significant torque arose on the secondary's orbit, typically modifying the orbit's size, eccentricity and inclination in less than 105 years, for components of 1 and 0.3 km radii, separated by 2 km, at 1 AU, each of density 1750 kg m−3. Together YORP and BYORP are capable of synchronizing secondaries and circularizing orbits, making tidal dissipation unnecessary to explain the evolved state of observed NEA pairs. However, BYORP's rapid timescale poses a problem for the abundance of observed NEA binaries, since their formation rate is thought to be much slower. We consider and reject the following resolutions of this quandary: (i) the approximation using Gaussian spheroids inadequately models YORP; (ii) most secondaries are not synchronous, but inhabit other spin-orbit resonances (very unlikely); (iii) tidal dissipation is much more efficient than previously estimated, and thus capable of stabilizing observed systems; and (iv) moderately close encounters with planets can re-orient secondaries, turning BYORP into a slower, random-walk process. Finally, we speculate that most observed binary NEAs are in a stable state in which the obliquity-changing torques of YORP (acting on the primary) and BYORP cancel out, and that those systems must be close to 55° inclination, where the momentum-changing torques of both YORP and BYORP tend to be very small. Some retrograde systems might develop such that the nodes precess at a Sun-synchronous rate, while some prograde ones might move into the “evection” resonance. All three of these hypotheses can be tested directly by comparison with the i, Ω and ? observed for NEA binaries.  相似文献   

11.
We observed (22) Kalliope and its companion Linus with the integral-field spectrograph OSIRIS, which is coupled to the adaptive optics system at the W.M. Keck 2 telescope on March 25, 2008. We present, for the first time, component-resolved spectra acquired simultaneously in each of the Zbb (1-1.18 μm), Jbb (1.18-1.42 μm), Hbb (1.47-1.80 μm), and Kbb (1.97-2.38 μm) bands. The spectra of the two bodies are remarkably similar and imply that both bodies were formed at the same time from the same material; such as via incomplete re-accretion after a major impact on the precursor body.  相似文献   

12.
We report the direct detection of radiation pressure on the asteroid 2009 BD, one of the smallest multi-opposition near-Earth objects currently known, with H ∼ 28.4. Under the purely gravitational model of NEODyS the object is currently considered a possible future impactor, with impact solutions starting in 2071. The detection of a radiation-related acceleration allows us to estimate an Area to Mass Ratio (AMR) for the object, that can be converted (under some assumptions) into a range of possible values for its average density. Our result AMR = (2.97 ± 0.33) × 10−4 m2 kg−1 is compatible with the object being of natural origin, and it is narrow enough to exclude a man-made nature. The possible origin of this object, its future observability, and the importance of radiation pressure in the impact monitoring process are also discussed.  相似文献   

13.
Photometric observations made during the years 2000-2005 are used to determine the pole orientation of (2953) Vysheslavia, a ?15-km size member of the Koronis family. We find admissible solutions for ecliptic latitude and longitude of the rotation pole P3: βp=−64°±10° and λp=11°±8° or P4: βp=−68°±8° and λp=192°±8°. These imply obliquity values γ=154°±14° and γ=157°±11°, respectively. The sidereal rotation period is Psid=0.2622722±0.0000018 day. This result is interesting for two reasons: (i) the obliquity value between 90° and 180° is consistent with a prediction done by Vokrouhlický et al. [Vokrouhlický, D., Bro?, M., Farinella, P., Kne?evi?, Z., 2001. Icarus 150, 78-93] that Vysheslavia might have been transported to its unstable orbit by the Yarkovsky effect, and (ii) with the obliquity close to 180°, Vysheslavia seems to belong to one of the two distinct groups in the Koronis family found recently by Slivan [Slivan, S.M., 2002. Nature 419, 49-51], further supporting the case of dichotomy in the spin axis distribution in this family. We also argue against the possibility that Vysheslavia reached its current orbit by a recent collisional breakup.  相似文献   

14.
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems.  相似文献   

15.
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density 〈ρbulk〉=3.46±0.07 g/cm3, grain density 〈ρgrain〉=3.53±0.08 g/cm3, porosity 〈P(%)〉=2.46±1.39, and bulk mass magnetic susceptibility 〈log χ〉=5.23±0.11. Measurements of the specific heat capacity for a 3.01-g Gao-Guenie sample, a 61.37-g Gao-Guenie sample, a 62.35-g Jilin H5 chondrite meteorite sample, and a 51.37-g Sikhote-Alin IIAB Iron meteorite sample are also presented. Temperature interpolation formula are further provided for the specific heat capacity, thermal conductivity, and thermal diffusivity of the 3.01-g Gao-Guenie sample in the temperature range 300<T (K)<800. We briefly review the possible effects of the newly deduced specific heat and thermal conductivity values on the ablation of meteoroids within the Earth's atmosphere, the modeling of asteroid interiors and the orbital evolution of meteoroids through the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect.  相似文献   

16.
The potentially hazardous Asteroid (33342) 1998 WT24 approached the Earth within 0.0125 AU on 2001 December 16 and was the target of a number of optical, infrared, and radar observing campaigns. Interest in 1998 WT24 stems from its having an orbit with an unusually low perihelion distance, which causes it to cross the orbits of the Earth, Venus, and Mercury, and its possibly being a member of the E spectral class, which is rare amongst near-Earth asteroids (NEAs). We present the results of extensive thermal-infrared observations of 1998 WT24 obtained in December 2001 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii and the ESO 3.6-m telescope in Chile. A number of thermal models have been applied to the data, including thermophysical models that give best-fit values of 0.35±0.04 km for the effective diameter, 0.56±0.2 for the geometric albedo, pv, and 100-300 J m−2 s−0.5 K−1 for the thermal inertia. Our values for the diameter and albedo are consistent with results derived from radar and polarimetric observations. The albedo is one of the highest values obtained for any asteroid and, since no other taxonomic type is associated with albedos above 0.5, supports the suggested rare E-type classification for 1998 WT24. The thermal inertia is an order of magnitude higher than values derived for large main-belt asteroids but consistent with the relatively high values found for other near-Earth asteroids. A crude pole solution inferred from a combination of our observations and published radar results is β=−52°, λ=355° (J2000), but we caution that this is uncertain by several tens of degrees.  相似文献   

17.
We observed near-Earth asteroid (NEA) 2100 Ra-Shalom over a six-year period, obtaining rotationally resolved spectra in the visible, near-infrared, thermal-infrared, and radar wavelengths. We find that Ra-Shalom has an effective diameter of Deff=2.3±0.2 km, rotation period P=19.793±0.001 h, visual albedo pv=0.13±0.03, radar albedo , and polarization ratio μc=0.25±0.04. We used our radar observations to generate a three-dimensional shape model which shows several structural features of interest. Based on our thermal observations, Ra-Shalom has a high thermal inertia of ∼103 J m−2 s−0.5 K−1, consistent with a coarse or rocky surface and the inferences of others [Harris, A.W., Davies, J.K., Green, S.F., 1998. Icarus 135, 441-450; Delbo, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. Our spectral data indicate that Ra-Shalom is a K-class asteroid and we find excellent agreement between our spectra and laboratory spectra of the CV3 meteorite Grosnaja. Our spectra show rotation-dependent variations consistent with global variations in grain size. Our radar observations show rotation-dependent variations in radar albedo consistent with global variations in the thickness of a relatively thin regolith.  相似文献   

18.
The MPC database of the asteroid observations (each position from near 20 millions) was used in analysis of observational accuracy for more than 300 active world observatories both professional and amateur. The values of the “Mean error of a single observation” σ (for α,δ) were derived based on the Pulkovo method of accuracy estimation. These values may be used for observatory weight assignment in the orbital improvement procedures. The accuracy of the best amateur observations is proved to be comparable with professional one (σ=±0.20). The detailed results in electronic format are accessible from the first author.  相似文献   

19.
Y.J. Choi  N. Brosch 《Icarus》2003,165(1):101-111
We describe observations of the scattered Kuiper Belt object (29981) 1999 TD10 performed during five observing runs at two observatories, over 370 days from 2000 September to 2001 September. They show significant brightness variations that fit a double-peaked lightcurve with period 15.448±0.012 h in V and R bands. The phase effect in V band, 0.09±0.01 mag deg−1, is smaller than that of Pluto but larger than that of several KBOs, while in R band it is 0.030±0.005 mag deg−1. We find color variation between the two bands, which implies a non-homogeneous albedo distribution on the surface. Evidence of surface activity near perihelion in the form of a coma/tail is presented using radial image profiles and a 2D contour map.  相似文献   

20.
Near-Earth Asteroid 4660 Nereus has been identified as a potential spacecraft target since its 1982 discovery because of the low delta-V required for a spacecraft rendezvous. However, surprisingly little is known about its physical characteristics. Here we report Arecibo (S-band, 2380-MHz, 13-cm) and Goldstone (X-band, 8560-MHz, 3.5-cm) radar observations of Nereus during its 2002 close approach. Analysis of an extensive dataset of delay-Doppler images and continuous wave (CW) spectra yields a model that resembles an ellipsoid with principal axis dimensions X=510±20 m, Y=330±20 m and . The pole direction is approximately located at ecliptic pole longitude and latitude of λ=+25°, β=+80° with the uncertainty radius of 10°. Our modeling yields a refined rotation period of 15.16±0.04 h. Nereus has a circular polarization (SC/OC) ratio of 0.74±0.08, which implies substantial near-surface centimeter-to-decimeter scale roughness. Dynamical analysis of our model suggests that YORP alteration of the rotation period may become evident within a few years. Nereus has two stable synchronous orbits where natural material may remain in orbit, while most asteroids observed to date do not have such stable synchronous orbits. We also find that spacecraft orbits about Nereus are feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号