首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photometric properties of the nucleus of Comet 9P/Tempel 1 are studied from the disk-resolved color images obtained by Deep Impact (DI). Comet Tempel 1 has typical photometric properties for comets and dark asteroids. The disk-integrated spectrum of the nucleus of Tempel 1 between 309 and 950 nm is linear without any features at the spectral resolution of the filtered images. At V-band, the red slope of the nucleus is 12.5±1% per 100 nm at 63° phase angle, translating to B-V=0.84±0.01, V-R=0.50±0.01, and R-I=0.49±0.02. No phase reddening is confirmed. The phase function of the nucleus of Tempel 1 is constructed from DI images and earlier ground-based observations found from the literature. The phase coefficient is determined to be β=0.046±0.007 mag/deg between 4° and 117° phase angle. Hapke's theoretical scattering model was used to model the photometric properties of this comet. Assuming a single Henyey-Greenstein function for the single-particle phase function, the asymmetry factor of Tempel 1 was fitted to be g=−0.49±0.02, and the corresponding single-scattering albedo (SSA) was modeled to be 0.039±0.005 at 550 nm wavelength. The SSA spectrum shows a similar linear slope to that of the disk-integrated spectrum. The roughness parameter is found to be 16°±8°, and independent of wavelength. The Minnaert k parameter is modeled to be 0.680±0.014. The photometric variations on Tempel 1 are relatively small compared to other comets and asteroids, with a ∼20% full width at half maximum of albedo variation histogram, and ∼3% for color. Roughness variations are evident in one small area, with a roughness parameter about twice the average and appearing to correlate with the complex morphological texture seen in high-resolution images.  相似文献   

2.
The disk-resolved flyby images of the nucleus of Comet 81P/Wild 2 collected by Stardust are used to perform a detailed study of the photometric properties of this cometary nucleus. A disk-integrated phase function from phase angle 11° to about 100° is measured and modeled. A phase slope of 0.0513 ± 0.0002 mag/deg is found, with a V-band absolute magnitude of 16.29 ± 0.02. Hapke’s photometric model yields a single-scattering albedo of 0.034, an asymmetry factor of phase function −0.53, a geometric albedo 0.059, and a V-band absolute magnitude of 16.03 ± 0.07. Disk-resolved photometric modeling from both the Hapke model and the Minnaert model results in 11% model RMS, indicating small photometric variations. The roughness parameter is modeled to be 27 ± 5° from limb-darkening profile. The modeled single-scattering albedo and asymmetry factor of the phase function are 0.038 ± 0.004 and −0.52 ± 0.04, respectively, consistent with those from disk-integrated phase function. The bulk photometric properties of the nucleus of Wild 2 are comparable with those of other cometary nuclei. The photometric variations on the surface of the nucleus of Wild 2 are at a level of or smaller than 15%, much smaller than those on the nucleus of Comet 19P/Borrelly and comparable or smaller than those on the nucleus of Comet 9P/Tempel 1. The similar photometric parameters of the nuclei of Wild 2, Tempel 1, and the non-source areas of fan jets on Borrelly may reflect the typical photometric properties of the weakly active surfaces on cometary nuclei.  相似文献   

3.
Color Variations on Eros from NEAR Multispectral Imaging   总被引:1,自引:0,他引:1  
NEAR multispectral imaging was obtained at seven wavelengths (450-1050 nm) to characterize hemispheric and regional color properties of Eros. The highest-resolution whole-disk data, 180 m/pixel, were obtained during the last pre-orbit insertion sequence on 12 February 2000. The same areas were imaged again in color at 10-20 m/pixel from high orbit in March-April 2000, and selected targets have been studied in color at resolutions as high as 4 m/pixel from low orbit. Whole-disk spectra are in close agreement with ground-based observations. These and the disk-resolved measurements show little variation in visible-wavelength color, but they do reveal spatial variation of several percent in the 950-nm/760-nm reflectance ratio, used here as a proxy for depth of the 1-μm olivine-pyroxene absorption band. After photometric correction to i=30° e=0° using both a Hapke correction and a modified empirical phase function, the disk-resolved images show reproducible spatial variations in albedo and 950-nm/760-nm reflectance ratio. The northern hemisphere exhibits average reflectances at i=30°, e=0° of 0.136±0.007 at 760 nm and 0.115±0.006 at 950 nm, equivalent to geometric albedos of 0.30±0.02 and 0.26±0.02, respectively. There is more than factor of 2 spatial variation in reflectance, but only about 10% variation in the 950-nm/760-nm reflectance ratio. Reflectance and color ratio are highly correlated, with the highest reflectances in discrete, sharp-edged patches on slopes exceeding 20°, consistent with material being exposed by downslope movement. Eros is also conspicuously deficient in small, bright, spectrally distinctive craters which are found on the other two S asteroids, Gaspra and Ida, imaged by spacecraft at close range. Eros exhibits a larger range of albedos than other S asteroids, but its color variations are much more subtle: variation in the 950-nm/760-nm reflectance ratio with 760-nm reflectance is several times less than on those asteroids or in the lunar maria. Of the different mechanisms possibly responsible for reflectance and color differences on Eros, spatial differences in the extent of regolith aging by space weathering are most consistent with Eros's observed properties. However, the effects of this process are both qualitatively and quantitatively different than in the lunar maria.  相似文献   

4.
Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph we have obtained for the first time spatially resolved 2000-3000 Å spectra of Io's Prometheus plume and adjoining regions on Io's anti-jovian hemisphere in the latitude range 60° N-60° S, using a 0.1″ slit centered on Prometheus and tilted roughly 45° to the spin axis. The SO2 column density peaked at 1.25×1017 cm−2 near the equator, with an additional 5×1016 cm−2 enhancement over Prometheus corresponding to a model volcanic SO2 output of 105 kg s−1. Apart from the Prometheus peak, the SO2 column density dropped fairly smoothly away from the subsolar point, even over regions that included potential volcanic sources. At latitudes less than ±30°, the dropoff rate was consistent with control by vapor pressure equilibrium with surface frost with subsolar temperature 117.3±0.6 K, though SO2 abundance was higher than predicted by vapor pressure control at mid-latitudes, especially in the northern hemisphere. We conclude that, at least at low latitudes on the anti-jovian hemisphere where there are extensive deposits of optically-thick SO2 frost, the atmosphere is probably primarily supported by sublimation of surface frost. Although the 45° tilt of our slit prevents us from separating the dependence of atmospheric density on solar zenith angle from its dependence on latitude, the pattern is consistent with a sublimation atmosphere regardless of which parameter is the dominant control. The observed drop in gas abundance towards higher latitudes is consistent with the interpretation of previous Lyman alpha images of Io as indicating an atmosphere concentrated at low latitudes. Comparison with previous disk-resolved UV spectroscopy, Lyman-alpha images, and mid-infrared spectroscopy suggests that Io's atmosphere is denser and more widespread on the anti-jovian hemisphere than at other longitudes. SO2 gas temperatures were in the range of 150-250 K over the majority of the anti-jovian hemisphere, consistent with previous observations. SO was not definitively detected in our spectra, with upper limits to the SO/SO2 ratio in the range 1-10%, roughly consistent with previous observations. S2 gas was not seen anywhere, with an upper limit of 7.5×1014 cm−2 for the Prometheus plume, confirming that this plume is significantly poorer in S2 than the Pele plume (S2 /SO2<0.005, compared to 0.08-0.3 at Pele). In addition to the gas absorption signatures, we have observed continuum emission in the near ultraviolet (near 2800 Å) for the first time. The brightness of the observed emission was directly correlated with the SO2 abundance, strongly peaking in the equatorial region over Prometheus. Emission brightness was modestly anti-correlated with the jovian magnetic latitude, decreasing when Io intersected the torus centrifugal equator.  相似文献   

5.
O. Muñoz  F. Moreno  D. Grodent  V. Dols 《Icarus》2004,169(2):413-428
We have studied the vertical structure of hazes at six different latitudes (−60°, −50°, −30°, −10°, +30°, and +50°) on Saturn's atmosphere. For that purpose we have compared the results of our forward radiative transfer model to limb-to-limb reflectivity scans at four different wavelengths (230, 275, 673.2, and 893 nm). The images were obtained with the Hubble Space Telescope Wide Field Planetary Camera 2 in September 1997, during fall on Saturn's northern hemisphere. The spatial distribution of particles appears to be very variable with latitude both in the stratosphere and troposphere. For the latitude range +50° to −50°, an atmospheric structure consisting of a stratospheric haze and a tropospheric haze interspersed by clear gas regions has been found adequate to explain the center to limb reflectivities at the different wavelengths. This atmospheric structure has been previously used by Ortiz et al. (1996, Icarus 119, 53-66) and Stam et al. (2001, Icarus 152, 407-422). In this work the top of the tropospheric haze is found to be higher at the southern latitudes than at northern latitudes. This hemispherical asymmetry seems to be related to seasonal effects. Different latitudes experience different amount of solar insolation that can affect the atmospheric structure as the season varies with time. The haze optical thickness is largest (about 30 at 673.2 nm) at latitudes ±50 and −10 degrees, and smallest (about 18) at ±30 degrees. The stratospheric haze is found to be optically thin at all studied latitudes from −50 to +50 degrees being maximum at −10° (τ=0.033). At −60° latitude, where the UV images show a strong darkening compared to other regions on the planet, the cloud structure is remarkably different when compared to the other latitudes. Here, aerosol and gas are found to be uniformly mixed down to the 400 mbar level.  相似文献   

6.
Venus cloud covered atmosphere offers a well-suited framework to study the coupling between the atmospheric dynamics and the structure of the cloud field. Violet images obtained during the Galileo flyby from 12 to 17 February 1990 have been analyzed to retrieve the zonal power spectra of the cloud brightness distribution field between latitudes 70° N and 50° S. The brightness distribution spectra serve as a diagnostic of the eddy kinetic energy spectrum providing indirect information about the distribution of energy along different spatial scales. We composed images covering a full rotation of the atmosphere at the level of the UV contrasted clouds obtaining maps of almost 360° that allowed us to obtain the brightness power spectra from wavenumbers k=1 to 50. A full analysis of the spectrum slope for different latitude bands and ranges of wave numbers is presented. The power spectra follow a classical law kn with exponent n ranging from −1.7 to −2.9 depending on latitude and the wavenumber range. For the whole planet, the average of this parameter is −2.1 intermediate between those predicted by the classical turbulence theories for three- and two-dimensional motions (n=−5/3 and n=−3). A comparison with previous analysis of Mariner 10 (in 1974) and Pioneer Venus (in 1979) shows significant temporal changes in the cloud global structure and in the turbulence characteristics of the atmosphere.  相似文献   

7.
The Composite Infrared Radiometer-Spectrometer (CIRS) instrument, on the NASA Cassini Saturn orbiter, has been acquiring thermal emission spectra from the atmosphere of Titan since orbit insertion in 2004. Observation sequences for measuring stratospheric temperatures have been obtained using both a nadir mapping mode and a limb viewing mode. The limb observations give better vertical resolution, and give information from higher altitudes, while the nadir observations provide more complete longitude coverage. Because the scale height of Titan's atmosphere is large enough so that emission from a grazing ray is influenced by horizontal temperature variations in the atmosphere, we have developed a two-dimensional temperature retrieval algorithm for reducing the limb spectra, which solves simultaneously for meridional and vertical temperature variations. The analyzed nadir mapping data have sampled nearly all longitudes at latitudes from about 90° S to 60° N, providing temperatures between pressure levels of about 5 to 0.2 mbar. The limb data covers latitudes between about 75° S and 85° N, and yields temperatures between about 1 and 0.005 mbar, at a small number of longitudes. The retrieved temperatures are consistent with early results from nadir observations [Flasar, F.M., and 44 colleagues, 2005. Science 308, 975-978] between 0.5 and 5 mbar where both results are valid, with the warmest temperatures at the equator, and much stronger meridional temperature gradients in the northern (winter) hemisphere than in the southern. At higher altitudes not probed by nadir viewing, the limb data reveal that the stratopause is nearly 20 K warmer in the northern polar regions than at the equator and southern hemisphere, and that the altitude of the stratopause shifts from ≈0.1 mbar (300 km) near the equator to 0.01 mbar (400 km) poleward of about 40° N. When the gradient wind equation is used to construct a zonal mean wind, the reversal in sign of the temperature leads to capping of the winter westerly flow. The core of the resulting jet is about 190 m s−1 in magnitude, spans between 30° N and 60° N, and peaks near 0.1 mbar. Estimates of the radiative heating associated with the radiative disequilibrium lead to a meridional overturning timescale of about three Earth years.  相似文献   

8.
Scattering and absorption of sunlight by aerosols are integral to understanding the radiative balance of any planetary atmosphere covered in a haze, such as Titan and possibly the early Earth. One key optical parameter of an aerosol is its refractive index. We have simulated both Titan and early Earth organic haze aerosols in the laboratory and measured the real and imaginary portion of their refractive index at λ = 532 nm using cavity ringdown aerosol extinction spectroscopy. This novel technique allows analysis on freely-floating particles minutes after formation. For our Titan analog particles, we find a real refractive index of n = 1.35 ± 0.01 and an imaginary refractive index k = 0.023 ± 0.007, and for the early Earth analog particles we find n = 1.81 ± 0.02 and k = 0.055 ± 0.020. The Titan analog refractive index has a smaller real and similar imaginary refractive index compared to most previous laboratory measurements of Titan analog films, including values from Khare et al. (Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W. [1984]. Icarus 60, 127-137). These newly measured Titan analog values have implications for spacecraft retrievals of aerosol properties on Titan. The early Earth analog has a significantly higher real and imaginary refractive index than Titan analogs reported in the literature. These differences suggest that, for a given amount of aerosol, the early Earth analog would act as a stronger anti-greenhouse agent than the Titan analog.  相似文献   

9.
The spectrometers of the Cassini mission to the Saturn system have detected haze layers reaching up to 800 km in Titan’s atmosphere. Knowledge of the complex refractive index (k) of the haze is important for modeling the surface and atmosphere of Titan and retrieving some information about the functional groups present in the aerosols. Plasma discharges or ultraviolet radiation are commonly used to drive the formation of solid organics assumed to be good analogs of the Titan aerosols. [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. The photochemical formation of a Titan haze analog. Structural analysis by X-ray photoelectron and infrared spectroscopy. Icarus 162, 114-124; Tran, B.N., Force, M., Briggs, R., Ferris J.P., Persans, P., Chera, J.J., 2008. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan’s atmosphere. Icarus 177, 106-115] reported the index of refraction of analogs synthesized by far ultraviolet irradiation of various gas mixtures. k was determined in the 200-800 nm wavelength range from transmission and reflection spectroscopy. However, this technique is limited by (i) uncertainties in the absorption values because of the small amounts of organics available, (ii) light scattering by the surface roughness and particulates in the sample. These limitations prompted us to perform new measurements using photothermal deflection spectroscopy (PDS), a technique based on the conversion of absorbed light into heat in the material of interest. By combining traditional spectroscopy (λ < 500 nm) and PDS (λ > 500 nm), we determined values of k over the 375-1550 nm range. k values as low as 10−4 above 1000 nm were determined. This is one order of magnitude lower than the measurements generally used as a reference for Titan’s aerosols analogs [Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callicott, T.A., Williams, M.W., 1984. Optical-constants of organic Tholins produced in a simulated Titanian atmosphere—from soft-X-ray to microwave-frequencies. Icarus 60(1), 127-137]. We recommend that these results were used in models to describe the optical properties of the aerosols produced in Titan’s stratosphere.  相似文献   

10.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

11.
Using spectra taken with NIRSPEC (Near Infrared Spectrometer) and adaptive optics on the Keck II telescope, we resolved the latitudinal variation of the 3ν2 band of CH3D at 1.56 μm. As CH3D is less abundant than CH4 by a factor of 50±10×10-5, these CH3D lines do not saturate in Titan’s atmosphere, and are well characterized by laboratory measurements. Thus they do not suffer from the large uncertainties of the CH4 lines that are weak enough to be unsaturated in Titan. Our measurements of the methane abundance are confined to the latitude range of 32°S-18°N and longitudes sampled by a 0.04″ slit centered at ∼195°W. The methane abundance below 10 km is constant to within 20% in the tropical atmosphere sampled by our observations, consistent with the low surface insolation and lack of surface methane [Griffith, C.A., McKay, C.P., Ferri, F., 2008. Astrophys. J. 687, L41-L44].  相似文献   

12.
We present observations of Uranus taken with the near-infrared camera NIRC2 on the 10-m W.M. Keck II telescope, the Wide Field Planetary Camera 2 (WFPC2) and the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) from July 2007 through November 2009. In this paper we focus on a bright southern feature, referred to as the “Berg.” In Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., Ahue, A.W., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M. [2009]. Icarus 203, 265-286), we reported that this feature, which oscillated between latitudes of −32° and −36° for several decades, suddenly started on a northward track in 2005. In this paper we show the complete record of observations of this feature’s track towards the equator, including its demise. After an initially slow linear drift, the feature’s drift rate accelerated at latitudes ∣θ∣ < 25°. By late 2009 the feature, very faint by then, was spotted at a latitude of −5° before disappearing from view. During its northward track, the feature’s morphology changed dramatically, and several small bright unresolved features were occasionally visible poleward of the main “streak.” These small features were sometimes visible at a wavelength of 2.2 μm, indicative that the clouds reached altitudes of ∼0.6 bar. The main part of the Berg, which is generally a long sometimes multipart streak, is estimated to be much deeper in the atmosphere, near 3.5 bars in 2004, but rising to 1.8-2.5 bars in 2007 after it began its northward drift. Through comparisons with Neptune’s Great Dark Spot and simulations of the latter, we discuss why the Berg may be tied to a vortex, an anticyclone deeper in the atmosphere that is visible only through orographic companion clouds.  相似文献   

13.
In this work we analyze the spatial structure of Jupiter's cloud reflectivity field in order to determine brightness periodicities and power spectra characteristics together with their relationship with Jupiter's dynamics and turbulence. The research is based on images obtained in the near-infrared (∼950 nm), blue (∼430 nm) and near-ultraviolet (∼260 nm) wavelengths with the Hubble Space Telescope in 1995 and the Cassini spacecraft Imaging Science Subsystem in 2000. Zonal reflectivity scans were analyzed by means of spatial periodograms and power spectra. The periodograms have been used to search for waves as a function of latitude. We present the values of the dominant wavenumbers for latitude bands between 32° N and 42° S. The brightness power spectra analysis has been performed in the meridional and zonal directions. The meridional analysis of albedo profiles are close to a k−5 law similarly to the wind profiles at blue and infrared wavelengths, although results differ from that in the ultraviolet. The zonal albedo analysis results in two distributions characterized by different slopes. In the near infrared and blue wavelengths, average spectral slopes are n1=−1.3±0.4 for shorter wavenumbers (k<80), and n2=−2.5±0.7 for greater wavenumbers, whereas for the ultraviolet n1=−1.9±0.4 and n2=−0.7±0.4, possibly showing a different dynamical regime. We find a turning point in the spectra between both regimes at wavenumber k∼80 (corresponding to L∼1000 km) for all wavelengths.  相似文献   

14.
Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477–1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15–0.25″.The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune’s atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20–40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator.A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus’ atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ∼ 0.6–0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune’s south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere.  相似文献   

15.
C.M. Anderson  E.F. Young  C.P. McKay 《Icarus》2008,194(2):721-745
We report on the analysis of high spatial resolution visible to near-infrared spectral images of Titan at Ls=240° in November 2000, obtained with the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope as part of program GO-8580. We employ a radiative transfer fractal particle aerosol model with a Bayesian parameter estimation routine that computes Titan's absolute reflectivity per pixel for 122 wavelengths by modeling the vertical distribution of the lower atmosphere haze and tropospheric methane. Analysis of these data suggests that Titan's haze concentration in the lower atmosphere varies in strength with latitude. We find Titan's tropospheric methane profile to be fairly consistent with latitude and longitude, and we find evidence for local areas of a CH4-N2 binary saturation in Titan's troposphere. Our results suggest that a methane and haze profile at one location on Titan would not be representative of global conditions.  相似文献   

16.
The kinetics of the reactions of C2H radical with ethane (k1), propane (k2), and n-butane (k3) are studied over the temperature range of T = 96-296 K with a pulsed Laval nozzle apparatus that utilizes a pulsed laser photolysis-chemiluminescence technique. The C2H decay profiles in the presence of both the alkane reactant and O2 are monitored by the CH(A2Δ) chemiluminescence tracer method. The results, together with available literature data, yield the following Arrhenius expressions: k1(T) = (0.51 ± 0.06) × 10−10 exp[(−76 ± 30)K/T] cm3 molecule−1 s−1 (T = 96-800 K), k2(T) = (0.98 ± 0.32) × 10−10exp[(−71 ± 60)K/T] cm3 molecule−1 s−1 (T = 96-361 K), and k3(T) = (1.23 ± 0.26) × 10−10 cm3 molecule−1 s−1 (T = 96-297 K). At T = 296 K, k1 is measured as a function of total pressure and has little or no pressure dependence. The results from this work support a direct hydrogen abstraction mechanism for the title reactions. Implications to the atmospheric chemistry of Titan are discussed.  相似文献   

17.
Five years of Cassini Imaging Science Subsystem images, from 2004 to 2009, are analyzed in this work to retrieve global zonal wind profiles of Saturn’s northern and southern hemispheres in the methane absorbing bands at 890 and 727 nm and in their respective adjacent continuum wavelengths of 939 and 752 nm. A complete view of Saturn’s global circulation, including the equator, at two pressure levels, in the tropopause (60 mbar to 250 mbar with the MT filters) and in the upper troposphere (from ∼350 mbar to ∼500 mbar with the CB filter set), is presented. Both zonal wind profiles (available at the Supplementary Material Section), show the same structure but with significant differences in the peak of the eastward jets and the equatorial region, including a region of positive vertical shear symmetrically located around the equator between the 10° < |φc| < 25° where zonal velocities close to the tropopause are higher than at 500 mbar. A comparison of previously published zonal wind sets obtained by Voyager 1 and 2 (1980-1981), Hubble Space Telescope, and ground-based telescopes (1990-2004) with the present Cassini profiles (2004-2009) covering a full Saturn year shows that the shape of the zonal wind profile and intensity of the jets has remained almost unchanged except at the equator, despite the seasonal insolation cycle and the variability of Saturn’s emitted power. The major wind changes occurred at equatorial latitudes, perhaps following the Great White Spot eruption in 1990. It is not evident from our study if the seasonal insolation cycle and its associated ring shadowing influence the equatorial circulation at cloud level.  相似文献   

18.
We propose a new interpretation of the D/H ratio in CH4 observed in the atmosphere of Titan. Using a turbulent evolutionary model of the subnebula of Saturn (O. Mousis et al. 2002, Icarus156, 162-175), we show that in contrast to the current scenario, the deuterium enrichment with respect to the solar value observed in Titan cannot have occurred in the subnebula. Instead, we argue that values of the D/H ratio measured in Titan were obtained in the cooling solar nebula by isotopic thermal exchange of hydrogen with CH3D originating from interstellar methane D-enriched ices that vaporized in the nebula. The rate of the isotopic exchange decreased with temperature and became fully inhibited around 200 K. Methane was subsequently trapped in crystalline ices around 10 AU in the form of clathrate hydrates formed at 60 K, and incorporated into planetesimals that formed the core of Titan. The nitrogen-methane atmosphere was subsequently outgassed from the decomposition of the hydrates (Mousis et al. 2002). By use of a turbulent evolutionary model of the solar nebula (O. Mousis et al. 2000, Icarus148, 513-525), we have reconstructed the entire story of D/H in CH4, from its high value in the early solar nebula (acquired in the presolar cloud) down to the value measured in Titan's atmosphere today. Considering the two last determinations of the D/H ratio in Titan—D/H=(7.75±2.25)×10−5 obtained from ground-based observations (Orton 1992, In: Symposium on Titan, ESA SP-338, pp. 81-85), and D/H=(8.75+3.25−2.25)×10−5, obtained from ISO observations (Coustenis et al. 2002, submitted for publication)—we inferred an upper limit of the D/H ratio in methane in the early outer solar nebula of about 3×10−4. Our approach is consistent with the scenario advocated by several authors in which the atmospheric methane of Titan is continuously replenished from a reservoir of clathrate hydrates of CH4 at high pressures, located in the interior of Titan. If this scenario is correct, observations of the satellite to be performed by the radar, the imaging system, and other remote sensing instruments aboard the spacecraft of the Cassini-Huygens mission from 2004 to 2008 should reveal local disruptions of the surface and other signatures of the predicted outgassing.  相似文献   

19.
New low-temperature methane absorption coefficients pertinent to the Titan environment are presented as derived from the Huygens DISR spectral measurements combined with the in-situ measurements of the methane gas abundance profile measured by the Huygens Gas Chromatograph/Mass Spectrometer (GCMS). The visible and near-infrared spectrometers of the descent imager/spectral radiometer (DISR) instrument on the Huygens probe looked upward and downward covering wavelengths from 480 to 1620 nm at altitudes from 150 km to the surface during the descent to Titan's surface. The measurements at continuum wavelengths were used to determine the vertical distribution, single-scattering albedos, and phase functions of the aerosols. The gas chromatograph/mass spectrometer (GCMS) instrument on the probe measured the methane mixing ratio throughout the descent. The DISR measurements are the first direct measurements of the absorbing properties of methane gas made in the atmosphere of Titan at the pathlengths, pressures, and temperatures that occur there. Here we use the DISR spectral measurements to determine the relative methane absorptions at different wavelengths along the path from the probe to the sun throughout the descent. These transmissions as functions of methane path length are fit by exponential sums and used in a haze radiative transfer model to compare the results to the spectra measured by DISR. We also compare the recent laboratory measurements of methane absorption at low temperatures [Irwin et al., 2006. Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm−1 and implications for interpretation of outer planet spectra. Icarus 181, 309-319] with the DISR measurements. We find that the strong bands formed at low pressures on Titan act as if they have roughly half the absorption predicted by the laboratory measurements, while the weak absorption regions absorb considerably more than suggested by some extrapolations of warm measurements to the cold Titan temperatures. We give factors as a function of wavelength that can be used with the published methane coefficients between 830 and 1620 nm to give agreement with the DISR measurements. We also give exponential sum coefficients for methane absorptions that fit the DISR observations. We find the DISR observations of the weaker methane bands shortward of 830 nm agree with the methane coefficients given by Karkoschka [1994. Spectrophotometry of the jovian planets and Titan at 300- to 1000-nm wavelength: the methane spectrum. Icarus 111, 174-192]. Finally, we discuss the implications of our results for computations of methane absorption in the atmospheres of the outer planets.  相似文献   

20.
In Titan's atmosphere consisting of N2 and CH4, large amounts of atomic hydrogen are produced by photochemical reactions during the formation of complex organics. This atomic hydrogen may undergo heterogeneous reactions with organic aerosol in the stratosphere and mesosphere of Titan. In order to investigate both the mechanisms and kinetics of the heterogeneous reactions, atomic deuterium is irradiated onto Titan tholin formed from N2 and CH4 gas mixtures at various surface-temperatures of the tholin ranging from 160 to 310 K. The combined analyses of the gas species and the exposed tholin indicate that the interaction mechanisms of atomic deuterium with the tholin are composed of three reactions; (a) abstraction of hydrogen from tholin resulting in gaseous HD formation (HD recombination), (b) addition of D atom into tholin (hydrogenation), and (c) removal of carbon and/or nitrogen (chemical erosion). The reaction probabilities of HD recombination and hydrogenation are obtained as ηabst=1.9(±0.6)×10−3×exp(−300/T) and ηhydro=2.08(±0.64)×exp(−1000/T), respectively. The chemical erosion process is very inefficient under the conditions of temperature range of Titan's stratosphere and mesosphere. Under Titan conditions, the rates of hydrogenation > HD recombination ? chemical erosion. Our measured HD recombination rate is about 10 times (with an uncertainty of a factor of 3-5) the prediction of previous theoretical model. These results imply that organic aerosol can remove atomic hydrogen efficiently from Titan's atmosphere through the heterogeneous reactions and that the presence of aerosol may affect the subsequent organic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号