首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We propose an interpretation of the enrichments in volatiles observed in the four giant planets with respect to the solar abundance. It is based on the assumption that volatiles were trapped in the form of solid clathrate hydrates and incorporated in planetesimals embedded in the feeding zones of each of the four giant planets. The mass of trapped volatiles is then held constant with time. The mass of hydrogen and of not trapped gaseous species continuously decreased with time until the formation of the planet was completed, resulting in an increase in the ratio of the mass of trapped volatiles to the mass of hydrogen (Gautier et al., Astrophys. J. 550 (2001) L227). The efficiency of the clathration depends upon the amount of ice available in the early feeding zone. The quasi-uniform enrichment in Ar, Kr, Xe, C, N, and S observed in Jupiter is reproduced because all volatiles were trapped. The non-uniform enrichment observed in C, N and S in Saturn is due to the fact that CH4, NH3, and H2S were trapped but not CO and N2. The non-uniform enrichment in C, N and S in Uranus and Neptune results from the trapping of CH4, CO, NH3 and H2S, while N2 was not trapped. Our scenario permits us to interpret the strongly oversolar sulfur abundance inferred by various modelers to be present in Saturn, Uranus and Neptune for reproducing the microwave spectra of the three planets. Abundances of Ar, Kr and Xe in these three are also predicted. Only Xe is expected to be substantially oversolar. The large enrichment in oxygen in Neptune with respect to the solar abundance, calculated by Lodders and Fegley (Icarus 112 (1994) 368) from the detection of CO in the upper troposphere of the planet, is consistent with the trapping of volatiles by clathration. The upper limit of CO in Uranus does not exclude that this process also occurred in Uranus.  相似文献   

2.
We use the clathrate hydrate trapping theory and gas drag formalism to calculate the composition of ices incorporated in the interior of Ceres. Utilizing a time-dependent solar nebula model, we show that icy solids can drift from beyond 5 au to the present location of the asteroid and be preserved from vaporization. We argue that volatiles were trapped in the outer solar nebula in the form of clathrate hydrates, hydrates and pure condensates prior to having been incorporated in icy solids and subsequently in Ceres. Under the assumption that most of volatiles were not vaporized during the accretion phase and the thermal evolution of Ceres, we determine the per mass abundances with respect to H2O of CO2, CO, CH4, N2, NH3, Ar, Xe and Kr in the interior of the asteroid. The Dawn space mission, scheduled to explore Ceres in August 2014, may have the capacity to test some predictions. We also show that an in situ measurement of the D/H ratio in H2O in Ceres could constrain the distance range in the solar nebula where its icy planetesimals were produced.  相似文献   

3.
A. Bar-Nun  G. Notesco 《Icarus》2007,190(2):655-659
Recent attempts using high resolution spectra to detect N+2 in several comets were unsuccessful [Cochran, A.L., Cochran, W.D., Baker, E.S., 2000. Icarus 146, 583-593; Cochran, A.L., 2002. Astrophys. J. 576, L165-L168]. The upper limits on N+2 in comparison with the positively detected CO+ for Comets C/1995 O1 Hale-Bopp, 122P/1995 S1 de Vico and 153P/2002 C1 Ikeya-Zhang range between . Ar was not detected in three recent comets [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98], with upper limits of Ar/CO<(3.4-7.8)×10−2 for Comets C/1999 T1 McNaught-Hartley, C/2001 A2 LINEAR and C/2000 WM1 LINEAR. The Ar detected by Stern et al. [Stern, S.A., Slater, D.C., Festou, M.C., Parker, J.Wm., Gladstone, G.R., A'Hearn, M.F., Wilkinson, E., 2000. Astrophys. J. 544, L169-L172] for Comet C/1995 O1 Hale-Bopp, gives a ratio Ar/CO=7.25×10−2, which was not confirmed by Cosmovici et al. [Cosmovici, C.B., Bratina, V., Schwarz, G., Tozzi, G., Mumma, M.J., Stalio, R., 2006. Astrophys. Space Sci. 301, 135-143]. Trying to solve the two problems, we studied experimentally the trapping of N2+CO+Ar in amorphous water ice, at 24-30 K. CO was found to be trapped in the ice 20-70 times more efficiently than N2 and with the same efficiency as Ar. The resulting Ar/CO ratio of 1.2×10−2 is consistent with Weaver et al.'s [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98] non-detection of Ar. However, with an extreme starting value for N2/CO = 0.22 in the region where the ice grains which agglomerated to produce comet nuclei were formed, the expected N2/CO ratio in the cometary ice should be 6.6×10−3, much higher than its non-detection limit.  相似文献   

4.
We have elaborated an evolutionary turbulent model of the subnebula of Saturn derived from that of Dubrulle (1993, Icarus106, 59-76) for the solar nebula, which is valid for a geometrically thin disk. We demonstrate that if carbon and nitrogen were in the form of CO and N2, respectively, in the early subnebula, these molecules were not subsequently converted into CH4 and NH3 during the evolution of the disk, contrary to the current scenario initially proposed by Prinn and Fegley (1981, Astrophys. J., 249, 308-317). However, if the early subnebula contained some CH4 and NH3, these gases were not subsequently converted into CO and N2. We argue that Titan must have been formed from planetesimals migrating from the outer part of the subnebula to the present orbit of the satellite. These planetesimals were relics of those embedded in the feeding zone of Saturn prior to the completion of the planet and contained hydrates of NH3 and clathrate hydrates of CH4. It is shown that, for plausible abundances of CH4 and NH3 in the solar nebula at 10 AU, the masses of methane and nitrogen trapped in Titan were higher than the estimate of masses of these components in the primitive atmosphere of the satellite. If our scenario is valid and if our turbulent model properly describes the structure and the evolution of the actual subnebula of Saturn, the Xe/C ratio should be six times higher in Titan's atmosphere today than in the Sun, while the current scenario would probably result in a quasi solar Xe/C ratio. The mass spectrometer and gas chromatograph instrument aboard the Huygens Titan probe of the Cassini mission has the capability of measuring this ratio in 2004, thus permitting us to discriminate between the current scenario and the one proposed in this report.  相似文献   

5.
We propose a new interpretation of the D/H ratio in CH4 observed in the atmosphere of Titan. Using a turbulent evolutionary model of the subnebula of Saturn (O. Mousis et al. 2002, Icarus156, 162-175), we show that in contrast to the current scenario, the deuterium enrichment with respect to the solar value observed in Titan cannot have occurred in the subnebula. Instead, we argue that values of the D/H ratio measured in Titan were obtained in the cooling solar nebula by isotopic thermal exchange of hydrogen with CH3D originating from interstellar methane D-enriched ices that vaporized in the nebula. The rate of the isotopic exchange decreased with temperature and became fully inhibited around 200 K. Methane was subsequently trapped in crystalline ices around 10 AU in the form of clathrate hydrates formed at 60 K, and incorporated into planetesimals that formed the core of Titan. The nitrogen-methane atmosphere was subsequently outgassed from the decomposition of the hydrates (Mousis et al. 2002). By use of a turbulent evolutionary model of the solar nebula (O. Mousis et al. 2000, Icarus148, 513-525), we have reconstructed the entire story of D/H in CH4, from its high value in the early solar nebula (acquired in the presolar cloud) down to the value measured in Titan's atmosphere today. Considering the two last determinations of the D/H ratio in Titan—D/H=(7.75±2.25)×10−5 obtained from ground-based observations (Orton 1992, In: Symposium on Titan, ESA SP-338, pp. 81-85), and D/H=(8.75+3.25−2.25)×10−5, obtained from ISO observations (Coustenis et al. 2002, submitted for publication)—we inferred an upper limit of the D/H ratio in methane in the early outer solar nebula of about 3×10−4. Our approach is consistent with the scenario advocated by several authors in which the atmospheric methane of Titan is continuously replenished from a reservoir of clathrate hydrates of CH4 at high pressures, located in the interior of Titan. If this scenario is correct, observations of the satellite to be performed by the radar, the imaging system, and other remote sensing instruments aboard the spacecraft of the Cassini-Huygens mission from 2004 to 2008 should reveal local disruptions of the surface and other signatures of the predicted outgassing.  相似文献   

6.
The in situ measurements of the Galileo Probe Mass Spectrometer (GPMS) were expected to constrain the abundances of the cloud-forming condensible volatile gases: H2O, H2S, and NH3. However, since the probe entry site (PES) was an unusually dry meteorological system—a 5-μm hotspot—the measured condensible volatile abundances did not follow the canonical condensation-limited vertical profiles of equilibrium cloud condensation models (ECCMs) such as Weidenschilling and Lewis (1973, Icarus 20, 465-476). Instead, the mixing ratios of H2S and NH3 increased with depth, finally reaching well-mixed equilibration levels at pressures far greater than the lifting condensation levels, whereas the mixing ratio of H2O in the deep well-mixed atmosphere could not be measured. The deep NH3 mixing ratio (with respect to H2) of (6.64±2.54)×10−4 from 8.9-11.7 bar GPMS data is consistent with the NH3 profile from probe-to-orbiter signal attenuation (Folkner et al., 1998, J. Geophys. Res. 103, 22847-22856), which had an equilibration level of about 8 bar. The GPMS deep atmosphere H2S mixing ratio of (8.9±2.1)×10−5 is the only measurement of Jupiter's sulfur abundance, with a PES equilibration level somewhere between 12 and 15.5 bar. The deepest water mixing ratio measurement is (4.9±1.6)×10−4 (corresponding to only about 30% of the solar abundance) at 17.6-20.9 bar, a value that is probably much smaller than Jupiter's bulk water abundance. The 15N/14N ratio in jovian NH3 was measured at (2.3±0.3)×10−3 and may provide the best estimate of the protosolar nitrogen isotopic ratio. The GPMS methane mixing ratio is (2.37±0.57)×10−3; although methane does not condense on Jupiter, we include its updated analysis in this report because like the condensible volatiles, it was presumably brought to Jupiter in icy planetesimals. Our detailed discussion of calibration and error analysis supplements previously reported GPMS measurements of condensible volatile mixing ratios (Niemann et al., 1998, J. Geophys. Res. 103, 22831-22846; Atreya et al., 1999, Planet. Space Sci. 47, 1243-1262; Atreya et al., 2003, Planet. Space Sci. 51, 105-112) and the nitrogen isotopic ratio (Owen et al., 2001b, Astrophys. J. Lett. 553, L77-L79). The approximately three times solar abundance of NH3 (along with CH4 and H2S) is consistent with enrichment of Jupiter's atmosphere by icy planetesimals formed at temperatures <40 K (Owen et al., 1999, Nature 402 (6759), 269-270), but would imply that H2O should be at least 3×solar as well. An alternate model, using clathrate hydrates to deliver the nitrogen component to Jupiter, predicts O/H?9×solar (Gautier et al., 2001, Astrophys. J. 550 (2), L227-L230). Finally we show that the measured condensible volatile vertical profiles in the PES are consistent with column-stretching or entraining downdraft scenarios only if the basic state (the pre-stretched column or the entrainment source region) is described by condensible volatile vertical profiles that are drier than those in the equilibrium cloud condensation models. This dryness is supported by numerous remote sensing results but seems to disagree with observations of widespread clouds on Jupiter at pressure levels predicted by equilibrium cloud condensation models for ammonia and H2S.  相似文献   

7.
Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets (Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34].  相似文献   

8.
Spectral observations of Saturn from the far infrared spectrometer aboard the Cassini spacecraft [Flasar, F.M., et al., 2005. Temperatures, winds, and composition in the Saturnian system. Science 307, 1247-1251] have revealed that the C/H ratio in the planet is in fact about twice higher than previously derived from ground based observations and in agreement with the C/H value derived from Voyager IRIS by Courtin et al. [1984. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio. Astrophys. J. 287, 899-916]. The implications of this measurement are reanalyzed in the present report on the basis that volatiles observed in cometary atmospheres, namely CO2, CH4, NH3 and H2S may have been trapped as solids in the feeding zone of the planet. CH4 and H2S may have been in the form of clathrate hydrates while CO2 presumably condensed in the cooling solar nebula. Carbon may also have been incorporated in organics. Conditions of temperature and pressure ease the hydratation of NH3. Such icy grains were included in planetesimals which subsequently collapsed into the hydrogen envelope of the planet, then resulting in C, N and S enrichments with respect to the solar abundance. Our calculations are consistent, within error bars, with observed elemental abundances on Saturn provided that the carbon trapped in planetesimals was mainly in the form of CH4 clathrate and CO2 ice (and maybe as organics) while nitrogen was in the form of NH3 hydrate. Our approach has implications on the possible pattern of noble gases in Saturn, since we predict that contrary to what is observed in Jupiter, Ar and Kr should be in solar abundance while Xe might be strongly oversolar. The only way to verify this scenario is to send a probe making in situ mass spectrometer measurements. Our scenario also predicts that the 14N/15N ratio should be somewhat smaller in Saturn than measured in Jupiter by Galileo.  相似文献   

9.
M. Ozima  Y.N. Miura 《Icarus》2004,170(1):17-23
Surface-correlated noble gases in lunar soils are primarily implanted SW (solar wind) noble gases. However, they also include apparently orphan radiogenic 40Ar, 129Xe, and 244Pu-derived fission Xe in excess of plausible primordial solar origin. These orphan radiogenic components are usually assigned a lunar origin, in a scenario in which radiogenic noble gases produced in the lunar interior were degassed into the transient atmosphere and then re-implanted to the lunar surface together with SW. There are some quantitative difficulties with this scenario, however, and it requires special constraints on the degassing history of the Moon that have not emerged from more general thermal history models. We therefore urge consideration of alternative hypotheses. As a possible source for the orphan radiogenic noble gases, we have examined planetary pollution of the Sun, as suggested by studies of extrasolar planetary systems (e.g., Murray et al., 2001, Astrophys. J. 555, 801-815; Israelian et al., 2001, Nature 411, 163-166). Pollution of the Sun by 2M (two Earth mass) planetary materials (Murray et al., 2001, Astrophys. J. 555, 801-815) is likely not significant for Ar but could be important to account for orphan Xe in the Moon.  相似文献   

10.
Several substances besides water ice have been detected on the surface of Europa by spectroscopic sensors, including CO2, SO2, and H2S. These substances might occur as pure crystalline ices, as vitreous mixtures, or as clathrate hydrate phases, depending on the system conditions and the history of the material. Clathrate hydrates are crystalline compounds in which an expanded water ice lattice forms cages that contain gas molecules. The molecular gases that may constitute Europan clathrate hydrates may have two possible ultimate origins: they might be primordial condensates from the interstellar medium, solar nebula, or jovian subnebula, or they might be secondary products generated as a consequence of the geological evolution and complex chemical processing of the satellite. Primordial ices and volatile-bearing compounds would be difficult to preserve in pristine form in Europa without further processing because of its active geological history. But dissociated volatiles derived from differentiation of a chondritic rock or cometary precursor may have produced secondary clathrates that may be present now. We have evaluated the current stability of several types of clathrate hydrates in the crust and the ocean of Europa. The depth at which the clathrates of SO2, CO2, H2S, and CH4 are stable have been obtained using both the temperatures observed in the surface [Spencer, J.R., Tamppari, L.K., Martin, T.Z., Travis, L.D., 1999. Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies. Science 284, 1514-1516] and thermal models for the crust. In addition, their densities have been calculated in order to determine their buoyancy in the ocean, obtaining different results depending upon the salinity of the ocean and type of clathrate. For instance, assuming a eutectic composition of the system MgSO4H2O for the ocean, CO2, H2S, and CH4 clathrates would float but SO2 clathrate would sink to the seafloor; an ocean of much lower salinity would allow all these clathrates to sink, except that CH4 clathrate would still float. Many geological processes may be driven or affected by the formation, presence, and destruction of clathrates in Europa such as explosive cryomagmatic activity [Stevenson, D.J., 1982. Volcanism and igneous processes in small icy satellites. Nature 298, 142-144], partial differentiation of the crust driven by its clathration, or the local retention of heat within or beneath clathrate-rich layers because of the low thermal conductivity of clathrate hydrates [Ross, R.G., Kargel, J.S., 1998. Thermal conductivity of Solar System ices, with special reference to martian polar caps. In: Schmitt, B., De Berg, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Dordrecht, pp. 33-62]. On the surface, destabilization of these minerals and compounds, triggered by fracture decompression or heating could result in formation of chaotic terrain morphologies, a mechanism that also has been proposed for some martian chaotic terrains [Tanaka, K.L., Kargel, J.S., MacKinnon, D.J., Hare, T.M., Hoffman, N., 2002. Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys. Res. Lett. 29 (8); Kargel, J.S., Prieto-Ballesteros, O., Tanaka K.L., 2003. Is clathrate hydrate dissociation responsible for chaotic terrains on Earth, Mars, Europa, and Triton? Geophys. Res. 5. Abstract 14252]. Models of the evolution of the ice shell of Europa might take into account the presence of clathrate hydrates because if gases are vented from the silicate interior to the water ocean, they first would dissolve in the ocean and then, if the gas concentrations are sufficient, may crystallize. If any methane releases occur in Europa by hydrothermal or biological activity, they also might form clathrates. Then, from both geological and astrobiological perspectives, future missions to Europa should carry instrumentation capable of clathrate hydrate detection.  相似文献   

11.
Studies of element abundances and values of D/H in the atmospheres of the outer planets and Titan support a two-step model for the formation of these bodies. This model suggests that the dimensions of Uranus provide a good index for the sensitivity required to detect planets around other stars. The high proportion of N2 on the surfaces of Pluto and Triton indicates that this gas was the dominant reservoir of nitrogen in the early solar nebula. It should also be abundant on pristine comets. There is evidence that some of these comets may well have brought a large store of volatiles to the inner planets, while others were falling into the sun. In other systems, icy planetesimals falling into stars should reveal themselves through high values of D/H.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

12.
To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2–3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, which includes not just water but methane, ammonia, CO and 54 minor ices, we calculate the solid surface density of a possible giant planet-forming solar nebula as a function of heliocentric distance and time. Our results can be used to provide the starting planetesimal surface density and evolving solar nebula conditions for core accretion simulations, or to predict the composition of planetesimals as a function of radius. We find three effects that favor giant planet formation by the core accretion mechanism: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) the fact that the ammonia and water ice lines should coincide, according to recent lab results from Collings et al. [Collings, M.P., Anderson, M.A., Chen, R., Dever, J.W., Viti, S., Williams, D.A., McCoustra, M.R.S., 2004. Mon. Not. R. Astron. Soc. 354, 1133–1140], and (3) the presence of a substantial amount of methane ice in the trans-saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62–85] by a factor of 3–4 throughout the trans-saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments.  相似文献   

13.
We investigated the parent volatile composition of the Oort cloud Comet C/2000 WM1 (LINEAR) on 23-25 November 2001, using the Near Infrared Echelle Spectrograph on the Keck II telescope. Flux-calibrated spectra, absolute production rates, and mixing ratios are presented for H2O, HCN, CH4, C2H2, C2H6, H2CO, CH3OH and CO. Compared with “organics-normal” comets, WM1 is moderately depleted in HCN, CH4 and CH3OH, and is even more depleted in C2H2 and CO. Its composition is thus intermediate to comets that are severely depleted in their organic volatile composition and those that exhibit “normal” organic volatile abundances. We argue that WM1 may have formed closer to the young Sun than “organics-normal” comets, but at greater distance than the severely depleted comets, before its ejection to the Oort cloud. The mixing ratios of the above-listed organic volatiles agree day-by-day for 23-25 November 2001. Thus, there is no evidence of macroscopic heterogeneity in chemistry of this comet’s nucleus at the achieved measurement accuracy. As the first comet to show moderate organic depletion in parent volatiles, WM1 represents an important addition to the emerging taxonomic classification based on chemical composition.  相似文献   

14.
R. Brasser  M.J. Duncan 《Icarus》2007,191(2):413-433
This paper deals with Oort cloud formation while the Sun was in an embedded cluster and surrounded by its primordial nebula. This work is a continuation of Brasser et al. [Brasser, R., Duncan, M., Levison, H., 2006. Icarus 184, 59-82], building on the model presented therein, and adding the aerodynamic drag and gravitational potential of the primordial solar nebula. Results are presented of numerical simulations of comets subject to the gravitational influence of the Sun, Jupiter, Saturn, star cluster and primordial solar nebula; some of the simulations included the gravitational influence of Uranus and Neptune as well. The primordial solar nebula was approximated by the minimum-mass Hayashi model [Hayashi, C., Nakozawa, K., Nakagawa, Y., 1985. In: Black, D.C., Matthews, M.S. (Eds.). Protostars and Planets II. Univ. of Arizona Press, Tucson, AZ] whose inner and outer radii have been truncated at various distances from the Sun. A comet size of 1.7 km was used for most of our simulations. In all of our simulations, the density of the primordial solar nebula decayed exponentially with an e-folding time of 2 Myr. It turns out that when the primordial solar nebula extends much beyond Saturn or Neptune, virtually no material will end up in the Oort cloud (OC) during this phase. Instead, the majority of the material will be on circular orbits inside of Jupiter if the inner edge of the disk is well inside Jupiter's orbit. If the disk's inner edge is beyond Jupiter's orbit, most comets end up on orbits in exterior mean-motion resonances with Saturn when Uranus and Neptune are not present. In those cases where the outer edge of the disk is close to Saturn or Neptune, the fraction of material that ends up in the subsequently formed OC is much less than that found in Brasser et al. [Brasser, R., Duncan, M., Levison, H., 2006. Icarus 184, 59-82] for the same cluster densities. This implies that for comets of roughly 2 km in size, the presence of the primordial solar nebula hinders OC formation. A byproduct of some of our simulations are endresults with a substantial fraction of the comets in the Uranus-Neptune scattered disk. A subsequent followup of this material is planned for the near future. In order to determine the effect of the size of the comets on OC formation efficiency, a set of runs with the same initial conditions but different cometary radii have been performed as well, from which it is determined that the threshold comet size to begin producing significant Oort clouds is roughly 20 km. This implies that the presence of the primordial solar nebula acts as a size-sorting mechanism, with large bodies unaffected by the gas drag and ending up in the OC while small bodies remain trapped in the planetary region, in the models studied.  相似文献   

15.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   

16.
A self-consistent method has been evolved to infer physical parameters like density, radiation field and abundances using line and continuum radiations as diagnostics. For that purpose, we first calculate the temperatures of graphite and silicate grains using the model of Li and Draine (Astrophys. J. 554:778, 2001) by solving self-consistently the energy balance for G 0 (1–104) times the radiation field following Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001). Consequently, infrared emission fluxes are also obtained. To keep it simple, this is presented in the empirical form of parameters T D and wavelength. The same model of the grain is adopted for photoelectric heating of gas using the formalism of Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001) (hereafter referred to as WD) and Bakes and Tielens (Astrophys. J. 427:822, 1994) (hereafter referred to as BT) for radiation field cited above in the range (6<hν≤13.6 eV). Temperature and abundances are determined using our own code for PDR very similar to cloudy code. All the possible sources of heating and cooling are considered for setting up the thermal balance. For the gas phase abundances that vary with depth in the cloud due to dust, self- and mutual shielding, chemical balance is solved. Most of the photoionization, photodissociation or chemical reaction rates are taken from UMIST database. We present an analysis of the cooling lines of singly ionized carbon [CII] at 158 μm and neutral oxygen [OI], at 63 μm and far infrared (FIR) continuum for a variety of star forming galaxies. Method of analysis of observational data is different from that of Malhotra et al. (Astrophys. J. 561:766, 2001). The radiation field G 0, density N h and abundance of carbon are obtained through best fit of observed and calculated intensities for lines and continuum radiations.  相似文献   

17.
The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ∼10M necessitates a sudden gas accretion cutoff just as Uranus and Neptune’s cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. [1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff.Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. [1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. [1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass fractions of methane ice, we can reject any Solar System formation model that initially places Uranus and Neptune inside of Saturn’s orbit. We also demonstrate that a large population of planetesimals must be present in both ice giant feeding zones throughout the lifetime of the gaseous nebula. This research marks a substantial step forward in connecting both the dynamical and chemical aspects of planet formation. Although we cannot say that the solid-rich solar nebula model of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) gives exactly the appropriate initial conditions for planet formation, rigorous chemical and dynamical tests have at least revealed it to be a viable model of the early Solar System.  相似文献   

18.
We present dark energy models in an anisotropic Bianchi type-VI0 (B-VI0) space-time with a variable equation of state (EoS). The EoS for dark energy ω is found to be time dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. in Astrophys. J. 598:102 2003), SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004b) and latest a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. 180:225, 2009; Komatsu et al. in Astrophys. J. Suppl. 180:330, 2009). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric aspects of the models are also discussed in detail.  相似文献   

19.
Recent detection of methane (CH4) on Mars has generated interest in possible biological or geological sources, but the factors responsible for the reported variability are not understood. Here we explore one potential sink that might affect the seasonal cycling of CH4 on Mars - trapping in ices deposited on the surface. Our apparatus consisted of a high-vacuum chamber in which three different Mars ice analogs (water, carbon dioxide, and carbon dioxide clathrate hydrates) were deposited in the presence of CH4 gas. The ices were monitored for spectroscopic evidence of CH4 trapping using transmission Fourier-Transform Infrared (FT-IR) spectroscopy, and during subsequent sublimation of the ice films the vapor composition was measured using mass spectrometry (MS). Trapping of CH4 in water ice was confirmed at deposition temperatures <100 K which is consistent with previous work, thus validating the experimental methods. However, no trapping of CH4 was observed in the ice analogs studied at warmer temperatures (140 K for H2O and CO2 clathrate, 90 K for CO2 snow) with approximately 10 mTorr CH4 in the chamber. From experimental detection limits these results provide an upper limit of 0.02 for the atmosphere/ice trapping ratio of CH4. If it is assumed that the trapping mechanism is linear with CH4 partial pressure and can be extrapolated to Mars, this upper limit would indicate that less than 1% is expected to be trapped from the largest reported CH4 plume, and therefore does not represent a significant sink for CH4.  相似文献   

20.
We have used the spectra obtained by the Composite Infrared Spectrometer (CIRS) onboard the Cassini spacecraft to search for latitudinal variation in the 15N/14N ratio on Jupiter. We found no variations statistically significant given the observational and model uncertainties. The absence of latitudinal variations demonstrates that 15NH3 is not fractionated in Jupiter's atmosphere, and that the measured 15N/14N represents Jupiter's global value. Our mean value for the global jovian 15N/14N ratio of (2.22±0.52)×10−3 agrees with previous measurements made by Fouchet et al. (2000, Icarus 143, 223-243) and Owen et al. (2001, Astrophys. J. 553, L77-L79). We argue that the jovian isotopic 15N/14N ratio must represent the solar nitrogen isotopic composition. The solar 15N/14N ratio hence significantly differs from the terrestrial value: (15N/14N)=3.68×10−3. This supports the proposition that terrestrial nitrogen originates from a nitrogen reservoir isolated from the main nitrogen reservoir in the proto-solar nebula. The origin and carrier of this isolated reservoir are still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号