首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present revised tremolite powder thermal decomposition kinetics using previous and newly acquired data from longer time (years instead of months) and lower temperature experiments (<1073 K). We also present kinetic results for decomposition of millimeter- to centimeter-sized tremolite grains. Natural tremolite samples were heated at ambient pressure in flowing CO2 or N2 gas from 1023-1238 K. The tremolite decomposition products are a physical mixture of two pyroxene solid solutions (with the bulk composition Dp59En41), a silica polymorph, and water vapor. Decomposition rates were calculated by using the mass loss of the heated samples. Tremolite crystals and crystalline powder decompositions follow different but related Avrami-Erofe'ev (nucleation and growth) kinetic models. The rate equations for thermal decomposition of tremolite crystalline powder and the larger crystal grains are log10kpowder (h−1)=18.69(±0.19)−23,845(±833)/T and log10kcrystal (h−1)=19.82(±0.07)−25,670(±916)/T. The associated apparent activation energies are 456(±16) kJ mol−1 and 491(±18) kJ mol−1, respectively. We propose a decomposition mechanism and suggest that decomposition and dehydroxylation occur simultaneously. The rate-limiting step is proposed to be structural rearrangement of the amphibole structure to the two pyroxenes and silica. This step and the overall decomposition rate are predicted to be independent of pressure from 1 to 100 bars. These kinetic analyses strengthen our previous conclusion (Johnson and Fegley, 2000, Icarus 146, 301-306) that if hydrous minerals, such as tremolite, formed on Venus during a wetter past, then these minerals could still exist at current conditions on Venus' surface today.  相似文献   

2.
I. López  J. Lillo 《Icarus》2008,195(2):523-536
Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.  相似文献   

3.
We have quantitatively assessed the resurfacing sources and styles in eighteen mapped venusian quadrangles, about 30% of the venusian surface. Each quadrangle was split into 0.5° by 0.5° boxes, which were then identified as corona materials, large volcano materials (>100 km diameter), intermediate volcano materials (10-100 km), small edifice materials (<10 km), flow materials from rifts or fractures, plains without an identifiable source, impact crater materials and highly deformed materials, or data gaps. We find that coronae resurface approximately 21%, small edifices 22% and large volcanoes about 6% of the surfaces analyzed. Plains with no identifiable source account for an average of 35% of the surface assessed. Small edifices resurface on a scale of 10-100 s of km2; large edifices resurface areas of 104-105 km2. Coronae have greatly varying amounts of associated volcanism, with some coronae producing negligible flow deposits and others producing deposits of 104-106 km2. The areas identified as plains with no visible source occur on small scales (102 km2) to large scales (> 105 km2). Our results indicate that the majority of plains resurfacing by volcanism can be tied to an identifiable source, that fields of small edifices contribute more to resurfacing than we had anticipated, and that resurfacing styles do not appear to have evolved over the time period represented by the surface geology in the mapped quadrangles. All of the units that we quantified occur throughout the histories of the regions mapped. We favor plains resurfacing to have occurred over at least 100 myr, which implies terrestrially reasonable resurfacing rates.  相似文献   

4.
The Community Atmosphere Model (CAM), a 3-dimensional Earth-based climate model, has been modified to simulate the dynamics of the Venus atmosphere. The most current finite volume version of CAM is used with Earth-related processes removed, parameters appropriate for Venus introduced, and some basic physics approximations adopted. A simplified Newtonian cooling approximation has been used for the radiation scheme. We use a high resolution (1° by 1° in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. A Rayleigh friction approach is used at the lower boundary to represent surface drag, and a similar approach is implemented in the uppermost few model levels providing a ‘sponge layer’ to prevent wave reflection from the upper boundary. The simulations generate superrotation with wind velocities comparable to those measured in the Venus atmosphere by probes and around 50-60% of those measured by cloud tracking. At cloud heights and above the atmosphere is always superrotating with mid-latitude zonal jets that wax and wane on an approximate 10 year cycle. However, below the clouds, the zonal winds vary periodically on a decadal timescale between superrotation and subrotation. Both subrotating and superrotating mid-latitude jets are found in the approximate 40-60 km altitude range. The growth and decay of the sub-cloud level jets also occur on the decadal timescale. Though subrotating zonal winds are found below the clouds, the total angular momentum of the atmosphere is always in the sense of superrotation. The global relative angular momentum of the atmosphere oscillates with an amplitude of about 5% on the approximate 10 year timescale. Symmetric instability in the near surface equatorial atmosphere might be the source of the decadal oscillation in the atmospheric state. Analyses of angular momentum transport show that all the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Possible changes in the structure of Venus’ cloud level mid-latitude jets measured by Mariner 10, Pioneer Venus, and Venus Express suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere, although no subrotating winds below the cloud level have been observed to date. Venus’ atmosphere must be observed over multi-year timescales and below the clouds if we are to understand its dynamics.  相似文献   

5.
In order to assess the age relations between astra/novae (features with extensive radial fracture-graben systems) and their surroundings, and to determine the duration of their activity, we undertook a photogeologic analysis of Magellan images of 78 astra, 49 dark-parabola craters and 114 clear-halo craters. For seven of these 78 astra it was found that the astrum-forming faulting started before or close to the time of emplacement of regional plains and extended into the second part of post-regional-plains time. Because the mean age of the regional plains is close to the mean surface age of Venus (which is estimated to be ∼750 m.y), this means that the duration of activity of these seven astra was several hundred millions of years. This is longer than the duration of activity of ongoing mantle plumes on Earth, but shorter than the duration of activity of the plume feeding the martian volcano Olympus Mons. The basic morphologic characteristics of these seven astra, as well as their age relations with other geologic units, are similar to those of the majority of other astra; therefore, such a long duration could also be typical of some other astra. We confirm the two-phase (pre- and post-regional-plains) evolution of astrum-forming faulting suggested in previous studies. For the first phase we show evidence for purely tectonic faulting caused by the diapiric rise of a mantle plume. For the second phase we find evidence supporting the interpretation of other studies that the observed faults resulted from subsurface dike intrusions produced by magmatism associated with the plume. We also found that faulting during the second phase was not instantaneous but distributed over a long period of time.  相似文献   

6.
Jane L. Fox 《Icarus》2011,216(2):625-639
We have modeled the near and post-terminator thermosphere/ionosphere of Venus with a view toward understanding the relative importance of EUV solar fluxes and downward fluxes of atomic ions transported from the dayside in producing the mean ionosphere. We have constructed one-dimensional thermosphere/ionosphere models for high solar activity for seven solar zenith angles (SZAs) in the dusk sector: 90°, 95°, 100°, 105°, 110°, 115° and 125°. For the first 4 SZAs, we determine the optical depths for solar fluxes from 3 Å to 1900 Å by integrating the neutral densities numerically along the slant path through the atmosphere. For SZAs of 90°, 95°, and 100°, we first model the ionospheres produced by absorption of the solar fluxes alone; for 95°, 100°, and 105° SZAs, we then model the ion density profiles that result from both the solar source and from imposing downward fluxes of atomic ions, including O+, Ar+, C+, N+, H+, and He+, at the top of the ionospheric model in the ratios determined for the upward fluxes in a previous study of the morphology of the dayside (60° SZA) Venus ionosphere. For SZAs of 110°, 115° and 125°, which are characterized by shadow heights above about 300 km, the models include only downward fluxes of ions. The magnitudes of the downward ion fluxes are constrained by the requirement that the model O+ peak density be equal to the average O+ peak density for each SZA bin as measured by the Pioneer Venus Orbiter Ion Mass Spectrometer. We find that the 90° and 95° SZA model ionospheres are robust for the solar source alone, but the O+ peak density in the “solar-only” 95° SZA model is somewhat smaller than the average value indicated by the data. A small downward flux of ions is therefore required to reproduce the measured average peak density of O+. We find that, on the nightside, the major ion density peaks do not occur at the altitudes of peak production, and diffusion plays a substantial role in determining the ion density profiles. The average downward atomic ion flux for the SZA range of 90–125° is determined to be about 1.2 × 108 cm−2 s−1.  相似文献   

7.
Baltis Vallis is a 6800-km long canali-type channel on Venus. Canali have a unique combination of morphological characteristics: extraordinary length, a single main conduit, and a degree of similarity to terrestrial rivers. These characteristics have given rise to intensive discussions on whether the origin of canali is erosional or constructional. Cross-sectional profiles of such channels reveal the detailed morphology of the structure and enable us to distinguish between these two possible origins; however, canali are just several kilometers wide and are therefore too small for the construction of cross-sectional profiles from Magellan altimetry data. Instead, we propose a new method for reconstructing short-wavelength topography using brightness data from Synthetic Aperture Radar images. We apply Muhleman's backscattering function to the backscatter intensity calculated from the brightness of Magellan Full-Resolution SAR Map images. The estimated vertical error of this new method is less than 5 m for a distance of 1 km across the channel. We studied 120 sites along an approximately 6000 km extent of Baltis Vallis. The channel profiles reveal that in nearly 90% of these sites, the bottom surface of the channel is lower than the surrounding plains by 20-100 m. Clear levee structures and intra-channel ridges are recognized in about 30 and 25%, respectively, of the sites analyzed within Baltis Vallis. Most of the levees occur in the upper segment of Baltis Vallis, while intra-channel ridges are mostly confined to the region between 1500 and 3000 km downstream from the probable source. The average depth and width of the channel are 46 m (standard deviation: 16 m) and 2.2 km (standard deviation: 0.4 km), respectively, and the depth profile along the channel is highly undulatory. The groove-like morphology and paucity of levee structures indicates an erosional origin. Furthermore, the observed undulations in depth along the channel indicate that Baltis Vallis most likely formed by mechanical erosion. The observed morphological transition from levees to intra-channel ridges suggests that the channel-forming processes changed across an area located approximately 1500 km from the source. Carbonatite is the most likely candidate material for the low-viscosity fluid that formed Baltis Vallis.  相似文献   

8.
The resurfacing evolution of Venus has been evaluated through Monte Carlo simulations. For the first time, the sizes of volcanic flows in the models were generated using the frequency-size distribution of volcanic units measured on Venus. A non-homogeneous spatial generation of volcanic units was included in the models reproducing the Beta-Alta-Themis volcanic anomaly. Crater modification is simulated using a 3D approach. The final number of modified craters and randomness of the crater population were used to evaluate the success of the models, comparing the results from our simulations with Venus observations. The randomness of the crater population is evaluated using pair-correlation statistics. On the one hand, a catastrophic resurfacing event followed by moderate volcanic activity covering ≈40% of the planetary surface can reproduce the number of modified craters and the pair-correlation statistics do not reject randomness. On the other hand, the pair-correlation test for equilibrium steady-state resurfacing models rejects the randomness of the crater population when reproducing the observed frequency-size distribution of the volcanic units with a non-homogeneous spatial generation of volcanic units.  相似文献   

9.
In this study we explore the idea that coronae have formed on Venus as a result of gravitational (Rayleigh-Taylor) instability of the lithosphere. The lithosphere is represented by a system of stratified homogeneous viscous layers (low-density crust over high density mantle, over lower density layer beneath the lithosphere). A small harmonic perturbation imposed on the base of the lithosphere is observed to result in gravitational instability under the constraint of assumed axisymmetry. Topography develops with time under the influence of dynamic stress associated with downwelling or upwelling, and spatially variable crustal thickening or thinning. Topography may therefore be elevated or depressed above a mantle downwelling, but the computed gravity anomaly is always negative above a mantle downwelling in a homogeneous asthenosphere. The ratio of peak gravity to topography anomaly depends primarily on the ratio of crust to lithospheric viscosity. Average observed ratios are well resolved for two groups of coronae (∼40 mgal km−1), consistent with models in which the crust is perhaps 5 times stronger than the lithosphere. Group 3a (rim surrounding elevated central region) coronae are inferred to arise from a central upwelling model, whereas Group 8 (depression) coronae are inferred to arise from central downwelling. Observed average coronae radii are consistent with a lithospheric thickness of only 50 km. An upper low-density crustal layer is 10-20 km thick, as inferred from the amplitude of gravity and topography anomalies.  相似文献   

10.
Terrestrial lightning is generated by the separation of electric charge residing on water-ice particles in clouds, a few kilometers above the electrically conducting surface of the Earth. It is detected optically, electromagnetically, and aurally. The majority of discharges occur within or between clouds with about one third discharging to the surface of the Earth. Upward-propagating lightning also occurs with effects extending into the ionosphere. On Venus, the clouds are close to 50 km above the surface of the planet, where the temperatures and pressures are near those of Earth’s surface. In contrast the atmospheric pressure near the surface of Venus is nearly 100 times that of Earth. Thus, while intra- and inter-cloud lightning is expected to occur in a manner similar to that on Earth, we do not expect discharges from the clouds to the surface to occur. Upward-going lightning may be more frequent at Venus because the ionosphere is closer to the clouds. As at Earth, Venus lightning has been detected optically and electromagnetically from a variety of platforms. We find that some of the observed properties of lightning are different at the two planets. Many of the differences in the electromagnetic waves detected by spacecraft can be attributed to effects during ionospheric propagation to the spacecraft. We review the differences in the ionospheres of Earth and Venus and how they affect observations. We use both the Pioneer Venus electric antenna observations as well as the Venus Express magnetic measurements.  相似文献   

11.
An analysis of ion data from 390 Venus Express, VEX, orbits demonstrates that the flow of solar wind- and ionospheric ions near Venus is characterized by a marked asymmetry. The flow asymmetry of solar wind H+ and ionospheric O+ points steadily in the opposite direction to the planet’s orbital motion, and is most pronounced near the Pole and in the tail/nightside region. The flow asymmetry is consistent with aberration forcing, here defined as lateral forcing induced by the planet’s orbital motion. In addition to solar wind forcing by the radial solar wind expansion, Venus is also subject a lateral/aberration forcing induced by the planet’s orbital motion transverse to the solar wind flow.The ionospheric response to lateral solar wind forcing is analyzed from altitude profiles of the ion density, ion velocity and ion mass-flux. The close connection between decreasing solar wind H+ mass-flux and increasing ionospheric O+ mass-flux, is suggestive of a direct/local solar wind energy and momentum transfer to ionospheric plasma. The bulk O+ ion flow is accelerated to velocities less than 10 km/s inside the dayside/flank Ionopause, and up to 6000 km in the tail. Consequently, the bulk O+ outflow does not escape, but remains near Venus as a fast (km/s) O+ zonal wind in the Venus polar and nightside upper ionosphere. Furthermore, the total O+ mass-flux in the Venus induced magnetosphere, increases steadily downward to a maximum of 2 × 10−14 kg/(m2 s) at ≈400 km altitude, suggesting a downward transport of energy and momentum. The O+, and total mass-flux, decay rapidly below 400 km. With no other plasma mass-flux as replacement, we argue that the reduction of ion mass-flux is caused by ion-neutral drag, a transfer of ion energy and momentum to neutrals, implying that the O+ plasma wind is converted to a neutral (thermosphere) wind at Venus. Incidentally, such a neutral wind would go in the same direction as the Venus atmosphere superrotation.  相似文献   

12.
Venus cloud covered atmosphere offers a well-suited framework to study the coupling between the atmospheric dynamics and the structure of the cloud field. Violet images obtained during the Galileo flyby from 12 to 17 February 1990 have been analyzed to retrieve the zonal power spectra of the cloud brightness distribution field between latitudes 70° N and 50° S. The brightness distribution spectra serve as a diagnostic of the eddy kinetic energy spectrum providing indirect information about the distribution of energy along different spatial scales. We composed images covering a full rotation of the atmosphere at the level of the UV contrasted clouds obtaining maps of almost 360° that allowed us to obtain the brightness power spectra from wavenumbers k=1 to 50. A full analysis of the spectrum slope for different latitude bands and ranges of wave numbers is presented. The power spectra follow a classical law kn with exponent n ranging from −1.7 to −2.9 depending on latitude and the wavenumber range. For the whole planet, the average of this parameter is −2.1 intermediate between those predicted by the classical turbulence theories for three- and two-dimensional motions (n=−5/3 and n=−3). A comparison with previous analysis of Mariner 10 (in 1974) and Pioneer Venus (in 1979) shows significant temporal changes in the cloud global structure and in the turbulence characteristics of the atmosphere.  相似文献   

13.
A fast method is presented for deriving the tropospheric CO concentrations in the Venus atmosphere from near-infrared spectra using the night side 2.3 μm window. This is validated using the spectral fitting techniques of Tsang et al. [Tsang, C.C.C., Irwin, P.G.J., Taylor, F.W., Wilson, C.F., Drossart, P., Piccioni, G., de Kok, R., Lee, C., Calcutt, S.B., and the Venus Express/VIRTIS Team, 2008a. Tropospheric carbon monoxide concentrations and variability on Venus with Venus Express/VIRTIS-M observations. J. Geophys. Res. 113, doi: 10.1029/2008JE003089. E00B08] to show that monitoring CO in the deep atmosphere can be done quickly using large numbers of observations, with minimal effect from cloud and temperature variations. The new method is applied to produce some 1450 zonal mean CO profiles using data from the first eighteen months of operation from the Visible and Infrared Thermal Imaging Spectrometer infrared mapping subsystem (VIRTIS-M-IR) on Venus Express. These results show many significant long- and short-term variations from the mean equator-to-pole increasing trend previously found from earlier Earth- and space-based observations, including a possible North-South dichotomy, with interesting implications for the dynamics and chemistry of the lower atmosphere of Venus.  相似文献   

14.
Of the impact craters on Earth larger than 20 km in diameter, 10-15% (3 out of 28) are doublets, having been formed by the simultaneous impact of two well-separated projectiles. The most likely scenario for their formation is the impact of well-separated binary asteroids. If a population of binary asteroids is capable of striking the Earth, it should also be able to hit the other terrestrial planets as well. Venus is a promising planet to search for doublet craters because its surface is young, erosion is nearly nonexistent, and its crater population is significantly larger than the Earth's. After a detailed investigation of single craters separated by less than 150 km and “multiple” craters having diameters greater than 10 km, we found that the proportion of doublet craters on Venus is at most 2.2%, significantly smaller than Earth's, although several nearly incontrovertible doublets were recognized. We believe this apparent deficit relative to the Earth's doublet population is a consequence of atmospheric screening of small projectiles on Venus rather than a real difference in the population of impacting bodies. We also examined “splotches,” circular radar reflectance features in the Magellan data. Projectiles that are too small to form craters probably formed these features. After a careful study of these patterns, we believe that the proportion of doublet splotches on Venus (14%) is comparable to the proportion of doublet craters found on Earth (10-15%). Thus, given the uncertainties of interpretation and the statistics of small numbers, it appears that the doublet crater population on Venus is consistent with that of the Earth.  相似文献   

15.
We present a systematic survey for satellites of Venus using the Baade-Magellan 6.5 m telescope and IMACS wide-field CCD imager at Las Campanas observatory in Chile. In the outer portions of the Hill sphere the search was sensitive to a limiting red magnitude of about 20.4, which corresponds to satellites with radii of a few hundred meters when assuming an albedo of 0.1. In the very inner portions of the Hill sphere scattered light from Venus limited the detection to satellites of about a kilometer or larger. Although several main belt asteroids were found, no satellites (moons) of Venus were detected.  相似文献   

16.
Near-infrared brightness temperature contrasts observed on the night side of Venus indicate variations in the size and distribution of particles in the lower and middle cloud decks. McGouldrick and Toon [McGouldrick, K., Toon, O.B., 2007. Icarus 191, 1-24] have shown that these changes can be explained by large-scale dynamics; in particular, that downdrafts may produce optical depth “holes” in the clouds. The lifetimes of these holes are observed to be moderately short, on the order of ten days. Here, we explore a simple model to better understand this lifetime. We have coupled a microphysical model of the Venus clouds with a simple, two-dimensional (zonal, vertical) kinematical transport model to study the effects of the zonal flow on the lifetime of the holes in the clouds. We find that although wind shear may be negligible within the cloud itself, the shear that is present near the top and the bottom of the statically unstable cloud region can lead to changes in the radiative-dynamical feedback which ultimately lead to the dissipation of the holes.  相似文献   

17.
We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions from OI, OII, NI, CI and CII and CO have been identified and their disc average intensity has been determined. They are generally somewhat brighter than those determined from the observations made with the HUT spectrograph at a lower activity level, We present the brightness distribution along the foot track of the UVIS slit of the OII 83.4 nm, OI 98.9 nm, Lyman-ß + OI 102.5 nm and NI 120.0 nm multiplets, and the CO C-X and B-X Hopfield-Birge bands. We make a detailed comparison of the intensities of the 834 nm, 989 nm, 120.0 nm multiplets and CO B-X band measured along the slit foot track on the disc with those predicted by an airglow model previously used to analyze Venus and Mars ultraviolet spectra. This model includes the treatment of multiple scattering for the optically thick OI, OII and NI multiplets. It is found that the observed intensity of the OII emission at 83.4 nm is higher than predicted by the model. An increase of the O+ ion density relative to the densities usually measured by Pioneer Venus brings the observations and the modeled values into better agreement. The calculated intensity variation of the CO B-X emission along the track of the UVIS slit is in fair agreement with the observations. The intensity of the OI 98.9 nm emission is well predicted by the model if resonance scattering of solar radiation by O atoms is included as a source. The calculated brightness of the NI 120 nm multiplet is larger than observed by a factor of ∼2-3 if photons from all sources encounter multiple scattering. The discrepancy reduces to 30-80% if the photon electron impact and photodissociation of N2 sources of N(4S) atoms are considered as optically thin. Overall, we find that the O, N2 and CO densities from the empirical VTS3 model provide satisfactory agreement between the calculated and the observed EUV airglow emissions.  相似文献   

18.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

19.
Jeremy Bailey 《Icarus》2009,201(2):444-453
The discovery of the near infrared windows into the Venus deep atmosphere has enabled the use of remote sensing techniques to study the composition of the Venus atmosphere below the clouds. In particular, water vapor absorption lines can be observed in a number of the near-infrared windows allowing measurement of the H2O abundance at several different levels in the lower atmosphere. Accurate determination of the abundance requires a good database of spectral line parameters for the H2O absorption lines at the high temperatures (up to ∼700 K) encountered in the Venus deep atmosphere. This paper presents a comparison of a number of H2O line lists that have been, or that could potentially be used, to analyze Venus deep atmosphere water abundances and shows that there are substantial discrepancies between them. For example, the early high-temperature list used by Meadows and Crisp [Meadows, V.S., Crisp, D., 1996. J. Geophys. Res. 101 (E2), 4595-4622] had large systematic errors in line intensities. When these are corrected for using the more recent high-temperature BT2 list of Barber et al. [Barber, R.J., Tennyson, J., Harris, G.J., Tolchenov, R.N., 2006. Mon. Not. R. Astron. Soc. 368, 1087-1094] their value of 45±10 ppm for the water vapor mixing ratio reduces to 27±6 ppm. The HITRAN and GEISA lists used for most other studies of Venus are deficient in “hot” lines that become important in the Venus deep atmosphere and also show evidence of systematic errors in line intensities, particularly for the 8000 to 9500 cm−1 region that includes the 1.18 μm window. Water vapor mixing ratios derived from these lists may also be somewhat overestimated. The BT2 line list is recommended as being the most complete and accurate current representation of the H2O spectrum at Venus temperatures.  相似文献   

20.
The intrablock deformation of Meshkenet Tessera on Venus is mostly due to responses of the uppermost surface bedrock to tensional stresses. It is found that complex deformation structures within the highland blocks resemble those of formed in chocolate tablet boudinaging which has taken place after original parallel faulting and bar-like crustal block formation. The high-angle tessera structures with varying cross-cutting relations define styles and locations of multiphase deformation most evidently related to local relaxation of tessera topography. Series of progressive or superposed fracturing events with alternating fault directions took place at high angles during this relaxational deformation. Compressional ridges often surround these tesserae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号