首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jafar Arkani-Hamed 《Icarus》2009,204(2):489-498
We investigate the polar wander of Mars in the last ∼4.2 Ga. We identify two sets of basins from the 20 giant impact basins reported by Frey [Frey, H., 2008. Geophys. Res. Lett. 35, L13203] which trace great circles on Mars, and propose that the great circles were the prevailing equators of Mars at the impact times. Monte Carlo tests are conducted to demonstrate that the two sets of basins are most likely not created by random impacts. Also, fitting 63,771 planes to randomly selected sets of 5, 6, or 7 basins indicated that the identified two sets are unique. We propose three different positions for the rotation pole of Mars, besides the present one. Accordingly, Tharsis bulge was initially formed at ∼50 N and moved toward the equator while rotating counterclockwise due to the influence of the two newly forming volcanic constructs, Alba Patera and Elysium Rise. The formation of the giant impact basins, subsequent mass concentrations (mascons) in Argyre, Isidis, and Utopia basins, and surface masses of volcanic mountains such as Ascraeus, Pavonis, Arsia and Olympus, caused further polar wander which rotated Tharsis bulge clockwise to arrive at its present location. The extensive polar motion of Mars during 4.2-3.9 Ga implies a weak lithosphere on a global scale, deduced from a total of 72,000 polar wander models driven by Tharsis bulge, Alba Patera and Elysium Rise as the major mass perturbations. Different compensation states, 0-100%, are examined for each of the surface loads, and nine different thicknesses are considered for an elastic lithosphere. The lithosphere must have been very weak, with an elastic thickness of less than 5 km, if the polar wander was driven by these mass perturbations.  相似文献   

2.
The geoid of Mars is dominated by its equilibrium figure and by the effect of the Tharsis rise. To investigate the rotational stability of Mars prior to the rise of Tharsis, we produced a residual non-hydrostatic geoid without Tharsis. First the hydrostatic component of the present-day flattening was removed. This procedure was performed using a 6% non-hydrostatic component of flattening, a value set by the spin axis precession rate of Mars. Then zonal spherical harmonics up to degree 6 centered on Tharsis were removed. Finally, the resultant residual geoid was evaluated for rotational stability by comparing polar and equatorial moments at 4050 trial pole positions. If the spin axis of ancient Mars was secularly stable, our analysis indicates that substantial polar wander has occurred with the rise of Tharsis. Stable spin axis positions on the non-hydrostatic residual figure of Mars are 15° to 90° from the present-day poles. This result is consistent with previously proposed paleopoles based on magnetic anomalies, geomorphology, and grazing impacts.  相似文献   

3.
L. Trafton 《Icarus》1984,58(2):312-324
Triton's seasons differ materially from those of Pluto owing to four important differences in the governing physics: First, the obliquity of Triton is significantly less than Pluto's obliquity. Second, Triton's inclined orbit precesses rapidly about Neptune so that a complicated seasonal variation in the latitude of the Sun occurs for Triton. Third, Neptune's orbit is much more circular than Pluto's orbit so that the sunlight intercepted by Triton's disk does not vary seasonally. Finally, Triton's atmosphere cannot be saturated at the lower latitudes so that the mass of the atmosphere is controlled by the temperature of the high-latitude ices or liquids (polar caps), as for CO2 on Mars. The consequences of Triton's entire surface being covered with volatile substances have been examined. It is found that the circularity of Neptune's orbit then implies that Triton would have hardly any seasonal variation at all in surface temperature or atmospheric bulk, in spite of the complicated precessional effects of Triton's orbit. The only seasonal effect would be the migration of surface ices and liquids. This scenario is ruled out because it implies a column CH4 abundance much higher than that observed and because it quickly depletes the lower latitudes of volatiles. It is concluded that Triton's most volatile surface substances are probably relegated to latitudes higher than 35° and probably form polar caps. The temperature of the polar caps should be nearly equal, even during midwinter/midsummer when the insolation of the summer pole is greatest. If the summer pole completely sublimates during one of the “major” summers, Triton's atmosphere may begin to freeze out over the winter caps. It is therefore expected that Triton's atmosphere undergoes large and complex seasonal variations. Triton is currently approaching a “maximum southern summer”, and over the remainder of this century, a dramatic increase in CH4 abundance above the current upper limit of 1 m-Am may be witnessed.  相似文献   

4.
《Icarus》1986,65(1):110-121
We have tested the polar wander paths recently proposed for Mars by Schultz and Lutz-Garihan and for the Moon by Runcorn through a comparison of the lithospheric stress field predicted for rapid global reorientations against observed tectonic features. We have employed the theory of Vening Meinesz and of Melosh to calculate the reorientation stresses, and we argue that the formation of normal faults or graben in broad regions surrounding the former rotation poles should be the minimum tectonic signature of a reorientation that generates lithospheric stresses in excess of the extensional strength of near-surface material. Such regions of normal faults are not present in the vicinity of the most recent proposed paleopoles for Mars, despite the large magnitude of the predicted shear stress (1–2 kbar). The minimum tectonic criterion would not be relaxed by invoking gradual polar wander or by considering the superposition of stresses associated with the global lithospheric response to the Tharsis rise. We conclude that polar wander of the magnitude and timing proposed by Schultz and Kutz-Garihan did not occur. It follows either that Tharsis has always been located near the Martian equator or that Tharsis began to dominate the nonhydrostatic figure prior to the end of heavy bombardment so that any tectonic signature of reorientation has since been obliterated by cratering. The predicted directions of stresses that would result from the most recent episode of proposed polar wander on the Moon, including stresses produced by reorientation of both the rotational and tidal figures, show little or no correspondence to observed tectonic features in the vicinity of the postulated nearside paleopole. The magnitude of the predicted reorientation stress is at most a few tens of bars, however, so that the tectonic test of polar wander on the Moon is inconclusive.  相似文献   

5.
E. Van Hemelrijck 《Icarus》1982,52(3):560-564
Calculations of the daily solar radiation incident at the top of Pluto's atmosphere and its variability with latitude and season and of the latitudinal variation of the mean annual daily insolation are presented. The large eccentricity of Pluto produces significant north-south seasonal asymmetries in the daily insolation. As for Uranus, having a similarly large obliquity, the equator receives less annual average energy than the poles.  相似文献   

6.
We estimate the impact flux and cratering rate as a function of latitude on the terrestrial planets using a model distribution of planet crossing asteroids and comets [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433]. After determining the planetary impact probabilities as a function of the relative encounter velocity and encounter inclination, the impact positions are calculated analytically, assuming the projectiles follow hyperbolic paths during the encounter phase. As the source of projectiles is not isotropic, latitudinal variations of the impact flux are predicted: the calculated ratio between the pole and equator is 1.05 for Mercury, 1.00 for Venus, 0.96 for the Earth, 0.90 for the Moon, and 1.14 for Mars over its long-term obliquity variation history. By taking into account the latitudinal dependence of the impact velocity and impact angle, and by using a crater scaling law that depends on the vertical component of the impact velocity, the latitudinal variations of the cratering rate (the number of craters with a given size formed per unit time and unit area) is in general enhanced. With respect to the equator, the polar cratering rate is about 30% larger on Mars and 10% on Mercury, whereas it is 10% less on the Earth and 20% less on the Moon. The cratering rate is found to be uniform on Venus. The relative global impact fluxes on Mercury, Venus, the Earth and Mars are calculated with respect to the Moon, and we find values of 1.9, 1.8, 1.6, and 2.8, respectively. Our results show that the relative shape of the crater size-frequency distribution does not noticeably depend upon latitude for any of the terrestrial bodies in this study. Nevertheless, by neglecting the expected latitudinal variations of the cratering rate, systematic errors of 20-30% in the age of planetary surfaces could exist between equatorial and polar regions when using the crater chronology method.  相似文献   

7.
New results from a 1 Gyr integration of the martian orbit are presented along with a seasonally resolved energy balance climate model employed to illuminate the gross characteristics of the long-term atmospheric pressure evolution. We present a new analysis of the statistical variation of the martian obliquity and precession prior to and subsequent to the formation of the Tharsis uplift, and explore the long term effects on the martian climate. We find that seasonal polar cycles have a critical influence on the ability for the regolith to release CO2 at high obliquities, and find that the atmospheric CO2 actually decreases at high obliquities due to the cooling effect of polar deposits at latitudes where seasonal caps form. At low obliquity, the formation of massive, permanent polar caps depends critically on the values of the frost albedo, Afrost, and frost emissivity, ?frost. Using our model with values of Afrost=0.67 and ?frost=0.55, matched to the NASA Ames General Circulation Model (GCM) results (Haberle et al., 1993, J. Geophys. Res. 98, 3093-3123, and Haberle et al., 2003, Icarus 161, 66-89), we find that permanent caps only form at low obliquities (<13°), suggesting that any permanent deposits on the surface of Mars today may be residuals left over from a period of very low obliquity, or are the result of mechanisms not represented by this model. Thus, contrary to expectations, the martian atmospheric pressure is remarkable static over time, and decreases both at high and low obliquity. Also, from our one billion year orbital model, we present new results on the fraction of time Mars is expected to experience periods of low obliquity and high obliquity.  相似文献   

8.
Methane hydrate dissociation due to obliquity-driven temperature change has been suggested as a potential source of atmospheric methane plumes recently observed on Mars. This work uses both equilibrium and time-dependent models to determine how geothermal gradients change on Mars as a result of obliquity and predict how these changes affect gas hydrate stability zones (HSZs). The models predict that the depth to the HSZ decreases with increasing latitude for both CO2 and CH4 hydrate, with CO2 hydrate occurring at shallower depths than CH4 hydrate over all latitudes. The depth of the HSZ increases as surface temperatures warm and decreases as surface temperatures cool with changing obliquity, with the largest change in HSZ volume predicted near the equator and the poles. Therefore, changes in the depth to the HSZ may cause hydrate dissociation near the equator and poles as the geothermal gradient moves in and out of the hydrate stability field over hundreds of thousands of years. Sublimation of overlying ice containing diffused methane could account for recent observations of seasonal methane plumes on Mars. In addition, near-surface gas hydrate reservoirs may be preserved at mid-latitudes due to minimal changes in surface temperature with obliquity over geologic time scales. Comparisons of the predicted changes in the HSZ with hydrate dissociation and diffusion rates reveal that metastable hydrate may also remain in the near subsurface, especially at high latitudes, for millions to billions of years. The presence of methane hydrate in the near subsurface at midlatitudes could be an important analytical target for future Mars missions, as well as serving as a source of fuel for future spacecraft.  相似文献   

9.
We examine the stratigraphy of the polar layered deposits (PLD) within the north polar cap of Mars to assess its layer continuity, correlations, cyclicity and structure and implications for the recent climate record. PLD sequences characterized using Fourier analysis and curve shape matching algorithms show that layers correlate throughout the upper part of the PLD. We tested for cyclicity and found that the uppermost ∼300 m contain a dominant wavelength layer packet of ∼30 m, interpreted to be a climate signal related to the 51 kyr precession cycle. Directly below this region we document a section of polar layered deposits ∼100 m thick without a dominant periodic signal; this is interpreted to represent a phase of low net accumulation and lag deposits formed during the last ice age, about 0.5-2 Ma ago. We further analyzed layer structure by combining these results with three-dimensional determinations of layer orientation (strike and dip) to assess the internal stratigraphy of the PLD and its implications for polar history. We show that individual layers within the PLD stratigraphy are not horizontal (no dip) but rather show broad variation in elevation with distance. Correlations suggest that the layer strikes and dips broadly follow present cap surface topography. Local variations in layer orientations in the vicinity of the troughs suggest that (1) trough structures were present at the time of layer accumulation and (2) dips may have been influenced by ice flow and/or static ice accumulation in the presence of preexisting troughs. This new information favors models in which the troughs are long-term structures of the PLD rather than (1) recently eroded into the PLD, or (2) very active and laterally migrating around the PLD. Our results strongly support the hypothesis that significant volumes of polar volatiles are mobilized and transported equator-ward during periods of increased obliquity. Our results predict that the upper ∼300 m of the north polar PLD accumulated in the last 500 ka, yielding net accumulation rates of ∼0.06 cm/yr. The presence and albedo of the no periodic signal zone suggest that polar net accumulation rates are very low and that dust rich lag deposits form during periods of sustained high obliquity. Layer sequences in the south polar and equatorial regions are examined and compared to those in the north; rhythmic sequences are observed in both regions but no direct correlations to the dominant signals of the north polar deposits have yet been found. These new techniques and observations provide a paradigm for further analysis of recent polar history (the upper kilometer of the record) and a basis for extending assessments to the lower part of the polar deposits and to other cyclic deposits in the geological record of Mars.  相似文献   

10.
Three localized sets of small arcuate ridges associated with slopes in the northern polar area of Mars (∼70°N latitude) are morphologically similar to sets of drop moraines left by episodes of advance and retreat of cold-based glaciers. Comparison with other glacial features on Mars shows that these features differ in important aspects from those associated with water–ice flow. Instead, we interpret these features to be due to perennial accumulation and flow of solid carbon dioxide during recent periods of very low spin-axis obliquity.  相似文献   

11.
Paul M. Schenk  Kevin Zahnle 《Icarus》2007,192(1):135-149
New mapping reveals 100 probable impact craters on Triton wider than 5 km diameter. All of the probable craters are within 90° of the apex of Triton's orbital motion (i.e., all are on the leading hemisphere) and have a cosine density distribution with respect to the apex. This spatial distribution is difficult to reconcile with a heliocentric (Sun-orbiting) source of impactors, be it ecliptic comets, the Kuiper Belt, the scattered disk, or tidally-disrupted temporary satellites in the style of Shoemaker-Levy 9, but it is consistent with head-on collisions, as would be produced if a prograde population of planetocentric (Neptune-orbiting) debris were swept up by retrograde Triton. Plausible sources include ejecta from impact on or disruption of inner/outer moons of Neptune. If Triton's small craters are mostly of planetocentric origin, Triton offers no evidence for or against the existence of small comets in the Kuiper Belt, and New Horizons observations of Pluto must fill this role. The possibility that the distribution of impact craters is an artifact caused by difficulty in identifying impact craters on the cantaloupe terrain is considered and rejected. The possibility that capricious resurfacing has mimicked the effect of head-on collisions is considered and shown to be unlikely given current geologic constraints, and is no more probable than planetocentrogenesis. The estimated cratering rate on Triton by ecliptic comets is used to put an upper limit of ∼50 Myr on the age of the more heavily cratered terrains, and of ∼6 Myr for the Neptune-facing cantaloupe terrain. If the vast majority of cratering is by planetocentric debris, as we propose, then the surface everywhere is probably less than 10 Myr old. Although the uncertainty in these cratering ages is at least a factor ten, it seems likely that Triton's is among the youngest surfaces in the Solar System, a candidate ocean moon, and an important target for future exploration.  相似文献   

12.
A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a “polar bald spot”. Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.  相似文献   

13.
A climate model of intermediate complexity, named the Mars Climate Simulator, has been developed based on the Portable University Model of the Atmosphere (PUMA). The main goal of this new development is to simulate the climate variations on Mars resulting from the changes in orbital parameters and their impact on the layered polar terrains (also known as permanent polar ice caps). As a first step towards transient simulations over several obliquity cycles, the model is applied to simulate the dynamical and thermodynamical response of the Martian climate system to different but fixed obliquity angles. The model is forced by the annual and daily cycle of solar insolation. Experiments have been performed for obliquities of φ=15° (minimum), φ=25.2° (present), and φ=35° (maximum). The resulting changes in solar insolation mainly in the polar regions impact strongly on the cross-equatorial circulation which is driven by the meridional temperature gradient and steered by the Martian topography. At high obliquity, the cross-equatorial near surface flow from the winter to the summer hemisphere is strongly enhanced compared to low obliquity periods. The summer ground temperature ranges from 200 K (φ=15°) to 250 K (φ=35°) at 80°N in northern summer, and from 220 K (φ=15°) to 270 K (φ=35°) at 80°S in southern summer. In the atmosphere at 1 km above ground, the respective range is 195-225 K in northern summer, and 210-250 K in southern summer.  相似文献   

14.
Accurate estimation of cratering asymmetry on the Moon is crucial for understanding Moon evolution history. Early studies of cratering asymmetry have omitted the contributions of high lunar obliquity and inclination. Here, we include lunar obliquity and inclination as new controlling variables to derive the cratering rate spatial variation as a function of longitude and latitude. With examining the influence of lunar obliquity and inclination on the asteroids population encountered by the Moon, we then have derived general formulas of the cratering rate spatial variation based on the crater scaling law. Our formulas with addition of lunar obliquity and inclination can reproduce the lunar cratering rate asymmetry at the current Earth-Moon distance and predict the apex/ant-apex ratio and the pole/equator ratio of this lunar cratering rate to be 1.36 and 0.87, respectively. The apex/ant-apex ratio is decreasing as the obliquity and inclination increasing. Combining with the evolution of lunar obliquity and inclination, our model shows that the apex/ant-apex ratio does not monotonically decrease with Earth-Moon distance and hence the influences of obliquity and inclination are not negligible on evolution of apex/ant-apex ratio. This model is generalizable to other planets and moons, especially for different spin-orbit resonances.  相似文献   

15.
Geological analysis of Mars imagery supports the hypothesis that the planet has been the site of recent (<?10 Ma) volcanic and tectonic processes and glacier flow, and makes most likely previous suggestions of continuing endogenic and exogenic activity. Tectonic structures which deform very slightly cratered (at MOC scales) surfaces of Tharsis Montes and surrounding regions seem to attest to active tectonism (both extensional and transcurrent) on Mars. Exogenic processes in this region, such as a glacial origin for the aureole deposits on the northwestern flanks of the Tharsis Montes shield volcanoes, are supported by new data. The very recent age of these structures could be the first direct confirmation that drastic changes in obliquity are modulating the martian climate, such that an increase in obliquity would result in equatorial glaciers taking the place of the receding polar ice caps. If this and other concurring research is extended and confirmed, the ‘alive Mars’ which would emerge would constitute a most appealing place for exobiology and comparative planetology.  相似文献   

16.
We use a Mars general circulation model to examine the effect of orbital changes on the planet’s general circulation and climate system. Experiments are performed for obliquities ranging from 0° to 60° for two different longitudes of perihelion. Each experiment simulates a full Mars year assuming a fixed atmospheric dust distribution and fixed amount of CO2 in the atmosphere/cap system. We find that global mean surface temperatures and pressures decline with increasing obliquity due to the increasing extent of the winter polar caps. The seasonal CO2 cycle and intensity of the solstice circulation amplify considerably with increasing obliquity such that global dust storms are likely at both solstices. The most significant feature of the high obliquity solstice circulations is the development of an intense low-level jet associated with the return branch of the Hadley circulation.Model surface stresses are used to map regions of preferred dust lifting, which are defined in terms of an annual deflation potential. For the present obliquity, the model-predicted regions of high deflation potential are in good agreement with Cantor et al.’s (2001, J. Geophys. Res.106, 23653-23688) observations, which gives us some confidence in the model’s ability to predict where lifting might occur when Mars’ orbit parameters are different than they are today. In general we find that the dust lifting potential increases sharply with obliquity and is greatest at times of high obliquity when perihelion coincides with northern summer solstice. Over an obliquity cycle, the model global annual deflation potential ranges from several tenths of a millimeter at 0° obliquity to almost 15 mm at 60° obliquity. Much higher values are possible when the atmosphere is very dusty.We find a strong correlation between the deflation potential and surface thermal inertia: regions of high deflation potential correspond to regions of high thermal inertia (high rock abundance), and regions of low deflation potential correspond to regions of low thermal inertia (high dust/sand abundance). Furthermore, while the regions of preferred lifting (high deflation potential) expand somewhat with increasing obliquity and dust loading, the central parts of Tharsis, Arabia, and Elysium show no tendency for significant lifting at any obliquity or longitude of perihelion. These regions may therefore be very old and represent net long-term sinks for atmospheric dust. It is the topography of the planet, through its influence on surface pressure and wind systems, which ultimately determines where dust accumulates.Finally, as was found by Fenton and Richardson (2001, J. Geophys. Res.106, 32885-32909), we find no tendency for the development of east-southeasterly winds at the Pathfinder site for any of our orbital change experiments. This suggests that the ancient wind regime discussed by Greeley et al. (2000, J. Geophys. Res.105, 1829-1840) was produced by other factors, such as polar wander.  相似文献   

17.
We examine the response of Martian climate to changes in solar energy deposition caused by variations of the Martian orbit and obliquity. We systematically investigate the seasonal cycles of carbon dioxide, water, and dust to provide a complete picture of the climate for various orbital configurations. We find that at low obliquity (15°) the atmospheric pressure will fall below 1 mbar; dust storms will cease; thick permanent CO2 caps will form; the regolith will release CO2; and H2O polar ice sheets will develop as the permafrost boundaries move poleward. At high obliquity (35°) the annual average polar temperature will increase by about 10°K, slightly desorbing the polar regolith and causing the atmospheric pressure to increase by not more than 10 to 20 mbar. Summer polar ground temperatures as high as 273°K will occur. Water ice caps will be unstable and may disappear as the equilibrium permafrost boundary moves equatorward. However, at high eccentricity, polar ice sheets will be favored at one pole over the other. At high obliquity dust storms may occur during summers in both hemispheres, independent of the eccentricity cycle. Eccentricity and longitude of perihelion are most significant at modest obliquity (25°). At high eccentricity and when the longitude of perihelion is close to the location of solstice hemispherical asymmetry in dust-storm generation and in polar ice extent and albedo will occur.The systematic examination of the relation of climate and planetary orbit provides a new theory for the formation of the polar laminae. The terraced structure of the polar laminae originates when eccentricity and/or obliquity variations begin to drive water ice off the dusty permanent H2O polar caps. Then a thin (meters) layer of consolidated dust forms on top of a dirty, slightly thicker (tens of meters) ice sheet and the composite is preserved as a layer of laminae composed predominately of water ice. Because of insolation variation on slopes, a series of poleward- and equatorward-facing scarps are formed where the edges of the laminae are exposed. Independently of orbital variations, these scarps propagate poleward both by erosion of the equatorward slopes and by deposition on the poleward slopes. Scarp propagation resurfaces and recycles the laminae forming the distinctive spiral bands of terraces observed and provides a supply of water to form new permanent ice caps. The polar laminae boundary marks the furthest eqautorward extension of the permanent H2O caps as the orbit varies. The polar debris boundary marks the furthest equatorward extension of the annual CO2 caps as the orbit varies.The Martian regolith is now a significant geochemical sink for carbon dioxide. CO2 has been irreversibly removed from the atmosphere by carbonate formation. CO2 has also benn removed by regolith adsorption. Polar temperature increases caused by orbital variations are not great enough  相似文献   

18.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2001,202(1):11-26
We present the pattern of the polar magnetic reversal for cycle 23 derived from H synoptic charts and have also included the reversals of the earlier cycles 18–22 for comparison. At the beginning of a new cycle (i.e., soon after the polar reversal) the zonal boundaries of unipolar magnetic regions of opposite polarities (seen as filament bands on the synoptic charts) appear close to and on either side of the equator continuing through the years of minimum indicating the onset of the cancellation of flux at these low latitudes. The cycle thus starts with cancellation of flux close to the equator and ends with the polar reversal or flux cancellation near the poles. The filament bands just below the polemost ones migrate and reach latitudes 35°–45° by the time of polar reversal and become the polemost, once the polar reversal has taken place. During the years of minimum that follow, these filament bands remain more or less stagnant at the latitudes 35°–45° except for occasional slow migration towards the equator. The migration to the poles starts at a low speed of 3 m s–1 only when the spot activity has risen to a significant level and then it accelerates to 30 m s–1 at the peak of the activity. It takes 3–4 years for the polemost bands to reach the poles moving at these high speeds. We quantify this possible cause and effect phenomenon by introducing the concept of the `strength of the solar cycle' and represent this by either of a set of three parameters. We show that the velocity of poleward migration is a linear function of the `strength of the solar cycle'.  相似文献   

19.
Due to the tides, the orbits of Phobos and Triton are contracting. While their semi major axes are decreasing, several possibilities of secular resonances involving node, argument of the pericenter and mean motion of the Sun will take place. In the case of Mars, if the obliquity (ε), during the passage through some resonances, is not so small, very significant variations of the inclination will appear. In one case, capture is almost certain provided that ε?20°. For Triton there are also similar situations, but capture seems to be not possible, mainly because in S1 state, Triton's orbit is sufficiently inclined (far) with respect to the Neptune's equator. Following Chyba et al. (Astron. Astrophys. 219 (1989) 123), a simplified equation that gives the evolution of the inclination versus the semi major axis, is derived. The time needed for Triton crash onto Neptune is longer than that one obtained by these authors, but the main difference is due to the new data used here. In general, even in the case of non-capture passages, some significant jumps in inclination and in eccentricities are possible.  相似文献   

20.
It has been suggested that the residual polar caps of Mars contain a reservoir of permanently frozen carbon dioxide which is controlling the atmospheric pressure. However, observational data and models of the polar heat balance suggest that the temperatures of the Martian poles are too high for solid CO2 to survive permanently. On the other hand, the icelike compound carbon dioxide-water clathrate (CO2 · 6H2O) could function as a CO2 reservoir instead of solid CO2, because it is stable at higher temperatures. This paper shows that the permanent polar caps may contain several millibars of CO2 in the form of clathrate, and discusses the implications of this permanent clathrate reservoir for the present and past atmospheric pressure on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号