首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here a search for solid ethane, C2H6, on the surfaces of Pluto and Triton, based on near-infrared spectral observations in the H and K bands (1.4-2.45 μm) using the Very Large Telescope (VLT) and the United Kingdom Infrared Telescope (UKIRT). We model each surface using a radiative transfer model based on Hapke theory (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge, UK) with three basic models: without ethane, with pure ethane, and with ethane diluted in nitrogen. On Pluto we detect weak features near 2.27, 2.405, 2.457, and 2.461 μm that match the strongest features of pure ethane. An additional feature seen at 2.317 μm is shifted to longer wavelengths than ethane by at least 0.002 μm. The strength of the features seen in the models suggests that pure ethane is limited to no more than a few percent of the surface of Pluto. On Triton, features in the H band could potentially be explained by ethane diluted in N2, however, the lack of corresponding features in the K band makes this unlikely (also noted by Quirico et al. (Quirico, E., Doute, S., Schmitt, B., de Bergh, C., Cruikshank, D.P., Owen, T.C., Geballe, T.R., Roush, T.L. [1999]. Icarus 139, 159-178)). While Cruikshank et al. (Cruikshank, D.P., Mason, R.E., Dalle Ore, C.M., Bernstein, M.P., Quirico, E., Mastrapa, R.M., Emery, J.P., Owen, T.C. [2006]. Bull. Am. Astron. Soc. 38, 518) find that the 2.406-μm feature on Triton could not be completely due to 13CO, our models show that it could not be accounted for entirely by ethane either. The multiple origin of this feature complicates constraints on the contribution of ethane for both bodies.  相似文献   

2.
The geoid of Mars is dominated by its equilibrium figure and by the effect of the Tharsis rise. To investigate the rotational stability of Mars prior to the rise of Tharsis, we produced a residual non-hydrostatic geoid without Tharsis. First the hydrostatic component of the present-day flattening was removed. This procedure was performed using a 6% non-hydrostatic component of flattening, a value set by the spin axis precession rate of Mars. Then zonal spherical harmonics up to degree 6 centered on Tharsis were removed. Finally, the resultant residual geoid was evaluated for rotational stability by comparing polar and equatorial moments at 4050 trial pole positions. If the spin axis of ancient Mars was secularly stable, our analysis indicates that substantial polar wander has occurred with the rise of Tharsis. Stable spin axis positions on the non-hydrostatic residual figure of Mars are 15° to 90° from the present-day poles. This result is consistent with previously proposed paleopoles based on magnetic anomalies, geomorphology, and grazing impacts.  相似文献   

3.
Harrington and Van Flandern (1979, Icarus39, 131–136) suggests that the irregular features of the Neptunian satellite system and Pluto's escape were caused by an encounter with a massive external body. They rule out the alternative mechanism based on the capture of Triton (which seems more plausible because it does not appeal to any unobserved object) on the basis of an incorrect deduction from McCord's (1966, Astron. J.71, 585–590) analysis on the tidal decay of Triton's orbit. As a matter of fact, many recent results show that satellite captures are possible, and in the case of Triton several arguments support this interpretation.  相似文献   

4.
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.  相似文献   

5.
M.H. Moore  R.L. Hudson 《Icarus》2003,161(2):486-500
Infrared spectra and radiation chemical behavior of N2-dominated ices relevant to the surfaces of Triton and Pluto are presented. This is the first systematic IR study of proton-irradiated N2-rich ices containing CH4 and CO. Experiments at 12 K show that HCN, HNC, and diazomethane (CH2N2) form in the solid phase, along with several radicals. NH3 is also identified in irradiated N2 + CH4 and N2 + CH4 + CO. We show that HCN and HNC are made in irradiated binary ice mixtures having initial N2/CH4 ratios from 100 to 4, and in three-component mixtures have an initial N2/(CH4 + CO) ratio of 50. HCN and HNC are not detected in N2-dominated ices when CH4 is replaced with C2H6, C2H2, or CH3OH.The intrinsic band strengths of HCN and HNC are measured and used to calculate G(HCN) and G(HNC) in irradiated N2 + CH4 and N2 + CH4 + CO ices. In addition, the HNC/HCN ratio is calculated to be ∼1 in both icy mixtures. These radiolysis results reveal, for the first time, solid-phase synthesis of both HCN and HNC in N2-rich ices containing CH4.We examine the evolution of spectral features due to acid-base reactions (acids such as HCN, HNC, and HNCO and a base, NH3) triggered by warming irradiated ices from 12 K to 30-35 K. We identify anions (OCN, CN, and N3−) in ices warmed to 35 K. These ions are expected to form and survive on the surfaces of Triton and Pluto. Our results have astrobiological implications since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are involved in the syntheses of biomolecules such as amino acids and polypeptides.  相似文献   

6.
Solar System Research - In the interaction of high-energy electrons with gases of planetary atmospheres where the primary component is molecular nitrogen, a significant fraction of particle energy...  相似文献   

7.
Triton, the large satellite of Neptune, was imaged by the Voyager 2 spacecraft in 1989 with dark plumes originating in its volatile-rich south polar region. Southern summer solstice, a time when seasonal volatile transport should be at a maximum, occurred in 2001. Ground-based observations of Triton’s rotational light curve obtained from Table Mountain Observatory in 2000-2004 reveal volatile transport on its surface. When compared with a static frost model constructed from Voyager images, the light curve shows an increase in total amplitude. An earlier light curve obtained in 1992 from Mauna Kea Observatory is consistent with the static frost model. This movement of volatiles on the surface agrees with recent imaging results from the Hubble Space Telescope (Bauer, J.M., Buratti, B.J., Li, J.-Y., Mosher, J.A., Hicks, M.D., Schmidt, B.E., Goguen, J.D. [2010]. Astrophys. J. 723, L49-L52). The changes in the light curve can be explained by the transport of nitrogen frost on the surface or by the uncovering of bedrock of less volatile methane. We also find that Triton exhibits a large opposition surge at solar phase angles less than 0.1°. This surge cannot be entirely explained by the effects of coherent backscatter.  相似文献   

8.
Javier Ruiz 《Icarus》2003,166(2):436-439
The Raz Fossae, a pair of ≈15-km wide trough en echelon interpreted as grabens, can be used to propose an estimation of the depth to the brittle-ductile transition on Triton. This estimation may in turn give an idea of the thermal state of Triton's icy lithosphere when these features formed. Given the young age of its surface, the conclusions obtained could be roughly applicable to the present state of this satellite of Neptune. Considering water or ammonia dihydrate as possible components of the lithosphere and a feasible range of strain rates, it was estimated that surface heat flow is greater than that inferred from radiogenic heating, especially for a lithosphere dominated by water. Also, an internal ocean could lie at a depth of only ∼20 km beneath the surface. The presence over the surface of an insulating layer of ice of low thermal conductivity (e.g., nitrogen) or of regolith would only substantially alter these estimates if the effective surface temperature were considerably higher than the observed value of 38 K.  相似文献   

9.
A new estimate of Pluto's mass within the range of possible masses considered in an earlier work has enabled us to refine our model of Pluto's interior.  相似文献   

10.
11.
Infrared spectrophotometric measurements of Neptune's satellite Triton obtained between 1980 and 1982 in the spectral range 0.8–2.5 μm show six individual absorption bands attributable to methane. An additional band in the Triton data is not methane. The Triton spectral data conform more closely to a laboratory spectrum of frozen methane than to a synthetic spectrum of methane gas computed for conditions of low temperature expected at the satellite. Additionally, the strength of the bands vary with Triton's orbital position. The data thus suggest that methane in the ice phase is mostly responsible for the bands in Triton's spectrum, and that the ice is distributed nonuniformly around the satellite's surface.  相似文献   

12.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2003,214(1):41-54
We have defined the duration of polar magnetic activity as the time interval between two successive polar reversals. The epochs of the polarity reversals of the magnetic field at the poles of the Sun have been determined (1) by the time of the final disappearance of the polar crown filaments and (2) by the time between the two neighbouring reversals of the magnetic dipole configuration (l=1) from the H synoptic charts covering the period 1870–2001. It is shown that the reversals for the magnetic dipole configuration (l=1) occur on an average 3.3±0.5 years after the sunspot minimum according to the H synoptic charts (Table I) and the Stanford magnetograms (Table III). If we set the time of the final disappearance of the polar crown filaments (determined from the latitude migration of filaments) as the criterion for deciding the epoch of the polarity reversal of the polar fields, then the reversal occurs on an average 5.8±0.6 years from sunspot minimum (last column of Table I). We consider this as the most reliable diagnostic for fixing the epoch of reversals, as the final disappearance of the polar crown filaments can be observed without ambiguity. We show that shorter the duration of the polar activity cycle (i.e., the shorter the duration between two neighbouring reversals), the more intense is the next sunspot cycle. We also notice that the duration of polar activity is always more in even solar cycles than in odd cycles whereas the maximum Wolf numbers W \max is always higher for odd solar cycles than for even cycles. Furthermore, we assume there is a secular change in the duration of the polar cycle. It has decreased by 1.2 times during the last 120 years.  相似文献   

13.
We have used spectrophotometric data from nine Hubble Space Telescope orbits to eclipse-map the primary component of the RS CVn binary SV Cam. From these observations and its HIPPARCOS parallax we find that the surface flux in the eclipsed low-latitude region is about 30 % lower than computed from the best fitting PHOENIX model atmosphere. This flux deficit can only be accounted for if about a third of the primary's surface is covered with unresolved spots. Even when we extend the spottedness from the eclipsed region to the entire surface, there still remains an unaccounted flux deficit. This remaining flux deficit is explained by the presence of a large polar spot extending down to latitude 42 ±6 °.Marie Curie Intra-European Fellow  相似文献   

14.
Gp. Horedt 《Icarus》1974,23(3):459-464
The equations of the plane circular restricted three-body problem are integrated in the case of an exponential mass variation of the small primary m for a particle librating around the tringular point and for a satellite of m. For a mass variation by a factor of 20, the librational amplitude of the particle shows no appreciable variation. The satellite escapes towards the regions inside the orbit of m, provided that the mass loss rate is sufficiently slow. Extrapolating these results to the real solar system, it seems unlikely that Jupiter's Trojans are former Jovian sattelites which escaped because of mass loss of proto-Jupiter. It also seems improbable that Pluto escaped from Neptune due to a proto-Neptunian mass loss.  相似文献   

15.
We develop a semiempirical grey radiative model to quantify Titan’s surface temperature as a function of pressure and composition of a nitrogen-methane-hydrogen atmosphere, solar flux and atmospheric haze. We then use this model, together with non-ideal gas-liquid equilibrium theory to investigate the behavior of the coupled surface-atmosphere system on Titan. We find that a volatile-rich Titan is unstable with respect to a runaway greenhouse—small increases in solar luminosity from the present value can lead to massive increases in surface temperature. If methane has been photolyzed throughout Titan’s history, then this runaway can only be avoided if the photolytic ethane is removed from the surface-atmosphere system.  相似文献   

16.
Banerjee  D.  Teriaca  L.  Doyle  J.G.  Lemaire  P. 《Solar physics》2000,194(1):43-58
We present observations of Ovi 1032 Å line profiles obtained with the SUMER instrument on SOHO extending from the solar disk to 1.5 R above the limb in the north polar coronal hole. Variations of the intensity and linewidth in the polar plume and inter-plume regions are investigated. We find an anti-correlation between the intensity and the linewidth in the plume and inter-plume regions with detailed plume structures been seen out to 1.5 R . Possible implications regarding the magnetic topologies of these two regions and related heating mechanisms are discussed. The Ovi linewidth measurements are combined with UVCS output to provide an overview of its variations with height extending up to 3.5 R . We find a linear increase of the linewidth from 1 to 1.2 R , then a plateau followed by a sharp increase around 1.5 R .  相似文献   

17.
18.
The fractionation factor f is important for interpreting the current escape fluxes of H and D on Venus and how the D/H ratio has evolved. The escape flux is currently governed by the two processes of charge exchange and collisional ejection by fast oxygen atoms. Using a best-fit parameterized equation for the O-H scattering angle phase function, more accurate branching ratios for the oxygen ion dissociation and including the effects of the initial energy and momentum of the ions and electrons, as well as for the hydrogen and deuterium gas, we have reanalyzed the collisional ejection process. Our analysis produces improved values for the efficiency of H and D escape as a function of the ionospheric temperature. From our results we propose the reduction of the hydrogen flux for collisional ejection from 8 to 3.5 x 10(6) cm-2 s-1. Assuming that collisions leading to escape occur mostly in the region between 200 and 400 km, the revised D/H fractionation factor due to collisional ejection is 0.47, where previously the process had been considered completely discriminating against deuterium escape (or f approximately 0.) The resulting deuterium flux is 3.1 x 10(4) cm-2 s-1, roughly 6 times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.  相似文献   

19.
S. Bravo  J. A. Otaola 《Solar physics》1989,122(2):335-343
Twenty years ago, Ohl (1966, 1968) found a correlation between geomagnetic activity around the minimum of the solar cycle and the Wolf sunspot number in the maximum of the following solar cycle. In this paper we shall show that such a relation means indeed a relation between the polar coronal holes area around the minimum of the solar cycle and the sunspot number in the maximum of the next. In fact, a very high positive correlation exists between the temporal evolution of the size of polar coronal holes and the Wolf sunspot number 6.3. years later.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号