首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Mantling deposits on the Moon are considered to be pyroclastic units emplaced on the lunar surface as a result of explosive fire fountaining. These pyroclastic units are characterized as having low albedos, having smooth fine-textured surfaces, and consisting in part of homogeneous, Febearing volcanic glass and partially crystallized spheres. Mantling units exhibit low returns on depolarized 3.8-cm radar maps, indicating an absence of surface scatterers in the 1- to 50-cm-size range. A number of reflectance spectra from several regional pyroclastic deposits are presented for the first time; these data support a previous interpretation that mantling units have a unique spectral signature which is indicative of the presence of a significant Fe-bearing volcanic glass component. The Rima Bode region is discussed as an example of an area in which several types of remote sensing data (including 3.8-cm radar, spectral reflectance, and multispectral vidicon data) were used to reconstruct the geologic events surrounding the emplacement of a regional pyroclastic mantling deposit. The recognition of numerous varieties of volcanic glass samples, especially relatively high-albedo (e.g., green, yellow) glasses, suggests the existence of additional, unrecognized mantling deposits with albedos higher than those studied to date. On the basis of the remote sensing data summarized and presented, five new areas have been identified which may represent higher-albedo regional pyroclastic deposits.  相似文献   

2.
Abstract— Clementine UV/VIS multi‐spectral data were used to map mare deposits in the eastern lunar nearside region (Mare Tranquillitatis, Mare Fecunditatis, Mare Serenitatis, Mare Crisium, Mare Nectaris) to understand the volcanic history of this region. An array of Clementine and Clementine‐derived data were used to classify mare basalts; these include: 750 nm albedo, UV/VIS ratio, 1 μm absorption signatures, and Clementine derived FeO and TiO2 contents. We have successfully identified several new geological units and have determined their spectral characteristics. For example, the relatively younger low‐Ti basalts were recognized in the eastern part of Mare Tranquillitatis. The central low‐Ti basalts in Mare Serenitatis, which had been classed as mISP, were divided into 2 groups. In Mare Nectaris, 2 types of mare basalts were identified, while only 1 group was recognized in the previous study. The stratigraphy constructed from the spectral analysis indicates that the mare deposits tend to become younger in the northern maria, including Serenitatis and Crisium, and older in the southern maria, including Tranquillitatis, Fecunditatis, and Nectaris. According to the relationship between the titanium contents of the mare units and their stratigraphy, the titanium content decreases with time in the early stage but increases toward the end of volcanism in the Serenitatis and Crisium region, while it increases with time but finally decreases in the Tranquillitatis and Fecunditatis region. In connection with the distribution of mare basalts, a large amount of high‐Ti mare basalts are found in Mare Tranquillitatis, especially in the western part, while other maria are covered by low‐Ti basalts. The iron contents show a similar distribution to that of titanium.  相似文献   

3.
This paper presents an updated stratigraphical and compositional study of the exposed maria within the Imbrium basin on the Moon. Clementine multispectral data were employed to derive TiO2 and FeO wt% abundance estimates of potentially distinct basaltic flows. Additionally, NASA Lunar Orbiter images were used to estimate flow ages using crater count statistics. Mare Imbrium shows evidence of a complex suite of low to high-Ti basaltic lava units infilling the basin over an 800 million year timescale. More than a third (37%) of identified mare basalts were found to contain 1-3 wt% TiO2. Two other major mare lithological units (representing about 25% of the surface each) show TiO2 values between 3-5 and 7-9 wt%. The dominant fraction (55%) of the sampled maria contain FeO between 16 and 18 wt%, followed by 27% of maria having 18-20 wt% and the remaining 18%, 14-16 wt% FeO. A crater frequency count (for diameters >500 m) shows that in three quarters of the sampled mare crater counts range between 3.5 and 5.5×10−2 per km2, which translates, according to a lunar cratering model chronology, into estimated emplacement ages between ∼3.3 and 2.5 Ga. A compositional convergence trend between the variations of iron and titanium oxides was identified, in particular for materials with TiO2 and FeO content broadly above 5 and 17 wt%, respectively, suggesting a related petrogenesis and evolution. According to these findings, three major periods of mare infill are exposed in the Imbrium basin; despite each period showing a range of basaltic compositions (classified according to their TiO2 content), it is apparent that, at least within these local geological settings, the igneous petrogenesis generally evolved through time towards more TiO2- and FeO-rich melts.  相似文献   

4.
We use multispectral reflectance data from the lunar Clementine mission to investigate the impact ejecta deposits of simple craters in two separate lunar mare basalt regions, one in Oceanus Procellarum and one in Mare Serenitatis. Over 100 impact craters are studied, and for a number of these we observe differences between the TiO2 (and FeO) contents of their ejecta deposits and the lava flow units in which they are located. We demonstrate that, in the majority of cases, these differences cannot plausibly be attributed to uncorrected maturity effects. These observations, coupled with morphometric crater relationships that provide maximum crater excavation depths, allow the investigation of sub-surface lava flow stratigraphy. We provide estimated average thicknesses for a number of lava flow units in the two study regions, ranging from ∼80 m to ∼600 m. In the case of the Serenitatis study area, our results are consistent with the presence of sub-surface horizons inferred from recent radar sounding measurements from the JAXA Kaguya spacecraft. The average lava flow thicknesses we obtain are used to make estimates of the average flux of volcanic material in these regions. These are in broad agreement with previous studies, suggesting that the variation in mare basalt types we observe with depth is similar to the lateral variations identified at the surface.  相似文献   

5.
We performed the first global survey of lunar regolith depths using Lunar Reconnaissance Orbiter Camera (LROC) data and the crater morphology method for determining regolith depth. We find that on both the lunar farside and in the nearside, non-mare regions, the regolith depth is twice as deep as it is within the lunar maria. Our data compare favorably with previous studies where such data exist. We also find that regolith depth correlates well with density of large craters (>20 km diameter). This result is consistent with the gradual formation of regolith by rock fracture during impact events.  相似文献   

6.
In this study we propose a regression model for the estimation of lunar elemental abundances from spectral features extracted from Clementine multispectral imagery in the visible and near-infrared domain. We extract a set of spectral features, including the continuum slope, the FWHM of the ferrous absorption trough near 1000 nm, and the wavelengths and relative depths of the absorption minima and inflection points present in the trough. As a “ground truth” for the elemental abundances we rely on the Lunar Prospector gamma ray spectrometer (LP GRS) data. With respect to the elemental abundances of the Apollo and Luna landing sites independently derived from returned samples, the best examined regression model is a second-order polynomial. The proposed regression-based approach allows an estimation of the elemental abundances of Ca, Al, Fe, Mg, and O at an accuracy of about 1 wt% and some tenths of a weight percent for Ti. We examine the influence of calibration of the Clementine UVVIS+NIR data and find that its effect on the results obtained with the regression approach is minor. Furthermore, we define a three-endmember model which allows the petrographic mapping of the lunar surface materials in terms of their Fe, Mg, and Al abundances. We examine the global distribution of Mg-rich rocks, the distribution of cryptomaria, and the occurrence of aluminous mare basalts in the Frigoris region. A possible regional compositional anomaly in northwestern Oceanus Procellarum is found, which corresponds to an extended area displaying spectral characteristics consistent with mare basalt containing significant amounts of olivine. On local scales, we examine in terms of our regression model the highland craters Proclus and Tycho, the compositionally anomalous central peaks of the craters Copernicus and Bullialdus, and the pyroclastic deposits on the floor of Alphonsus and on the northern rim of Petavius. As a general result, we show that the regression-based approach allows the detection of the main lunar terrain classes and rock types based on multispectral imagery in the visible and near-infrared domain.  相似文献   

7.
Skylab S-192 multispectral scanner data, in 12 bands covering wavelengths from 0.41 to 2.3 μm, have been investigated to identify and classify geologic units of the lunar surface. Seventeen spectral cluster classes have been identified, seven in the highlands, seven in the maria, and three of which occur in both or in border regions. This finding may be roughly indicative of the relative heterogeneity of these regions. It implies that there is as much heterogeneity in the highlands as in the maria. This work extends the spectral and aerial coverage of similar studies of the lunar surface and provides useful data for comparison for most of the lunar near side.  相似文献   

8.
The notion of a dry Moon has recently been challenged by the discovery of high water contents in lunar apatites and in melt inclusions within olivine crystals from two pyroclastic glasses. The highest and most compelling water contents were found in pyroclastic glasses that are not very common on the lunar surface. To obtain more representative constraints on the volatile content of the lunar interior, we measured the Zn content, a moderately volatile element, of mineral and rock fragments in lunar soils collected during Apollo missions. We here confirm that the Moon is significantly more depleted in Zn than the Earth. Combining Zn with existing K and Rb data on similar rocks allows us to anchor a new volatility scale based on the bond energy of nonsiderophile elements in their condensed phases. Extrapolating the volatility curve to H shows that the bulk of the lunar interior must be dry (≤1 ppm). This contrasts with the water content of the mantle sources of pyroclastic glasses, inferred to contain up to approximately 40 ppm water based on H2O/Ce ratios. These observations are best reconciled if the pyroclastic glasses derive from localized water‐rich heterogeneities in a dominantly dry lunar interior. We argue that, although late addition of 0.015% of a chondritic veneer to the Moon seems required to explain the abundance of platinum group elements (Day et al. 2007), the volatile content of the added material was clearly heterogeneous.  相似文献   

9.
Floor-fractured lunar craters   总被引:1,自引:0,他引:1  
Numerous lunar craters (206 examples, mean diameter = 40km) contain pronounced floor rilles (fractures) and evidence for volcanic processes. Seven morphologic classes have been defined according to floor depth and the appearance of the floor, wall, and rim zones. Such craters containing central peaks exhibit peak heights (approximately 1km) comparable to those within well-preserved impact craters but exhibit smaller rim-peak elevation differences (generally 0–1.5km) than those (2.4km) within impact craters. In addition, the morphology, spatial distribution, and floor elevation data reveal a probable genetic association with the maria and suggest that a large number of floor-fractured craters represent pre-mare impact craters whose floors have been lifted tectonically and modified volcanically during the epochs of mare flooding. Floor uplift is envisioned as floating on an intruded sill, and estimates of the buoyed floor thickness are consistent with the inferred depth of brecciation beneath impact craters, a zone interpreted as a trap for the intruding magma. The derived model of crater modification accounts for (1) the large differences in affected crater size and age; (2) the small peak-rim elevation differences; (3) remnant central peaks within mare-flooded craters and ringed plains; (4) ridged and flat-topped rim profiles of heavily modified craters and ringed plains; and (5) the absence of positive gravity anomalies in most floor-fractured craters and some large mare-filled craters. One of the seven morphologic classes, however, displays a significantly smaller mean size, larger distances from the maria, and distinctive morphology relative to the other six classes. The distinctive morphology is attributed, in part, to the relatively small size of the affected crater, but certain members of this class represent a style of volcanism unrelated to the maria - perhaps triggered by the last major basin-forming impacts.  相似文献   

10.
We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks ?1 cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ∼10 μm to 10 mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r* for all three planets. On the Moon, r* ∼ R−0.18 for craters 5-640 km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as r* ∼ R−0.49, consistent with ejecta entrainment in Venus’ dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R−0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials.  相似文献   

11.
The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) will fly as an ESA instrument on India's Chandrayaan-1 mission to the Moon, launched in October 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a scientifically much more capable instrument. Here we describe the scientific objectives of this instrument, which include mapping the abundances of the major rock-forming elements (principally Mg, Al, Si, Ti, Ca and Fe) in the lunar crust. These data will aid in determining whether regional compositional differences (e.g., the Mg/Fe ratio) are consistent with models of lunar crustal evolution. C1XS data will also permit geochemical studies of smaller scale features, such as the ejecta blankets and central peaks of large impact craters, and individual lava flows and pyroclastic deposits. These objectives all bear on important, and currently unresolved, questions in lunar science, including the structure and evolution of any primordial magma ocean, as revealed by vertical and lateral geochemical variations in the crust, and the composition of the lunar mantle, which will further constrain theories of the Moon's origin, thermal history and internal structure.  相似文献   

12.
The principal chemical element composition and inferred mineralogy of the powdered lunar surface material at seven mare and one terra sites on the Moon are compared. The mare compositions are all similar to one another and comparable to those of terrestrial ocean ridge basalts except in having higher titanium and much lower sodium contents than the latter. These analyses suggest that most, if not all, lunar maria have this chemical composition and are derived from rocks with an average density of 3.19 g cm–3. Mare Tranquillitatis differs from the other maria in having twice the titanium content of the others.The chemical composition of the single highland site studied (Surveyor 7) is distinctly different from that of any of the maria in having much lower amounts of titanium and iron and larger amounts of aluminium and calcium. Confirmation of these general characteristics of lunar highland material has come from recent observations by the Apollo 15 Orbiter. The inferred mineralogy is 45 mole percent high anorthite plagioclase and the parent rocks have an estimated density of 2.94 g cm–3. The Surveyor 7 chemical composition is the principal contributor to present estimates of the overall chemical composition of the lunar surface.Presented at the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 14–25, 1971. This paper is an expanded and updated version of a paper presented at the Apollo 12 Lunar Science Conference, Houston, Texas, January 11–14, 1971, and published in the Proceedings of this Conference (Turkevich, 1971).  相似文献   

13.
MESSENGER’s Mercury Dual Imaging System (MDIS) obtained multispectral images for more than 80% of the surface of Mercury during its first two flybys. Those images have confirmed that the surface of Mercury exhibits subtle color variations, some of which can be attributed to compositional differences. In many areas, impact craters are associated with material that is spectrally distinct from the surrounding surface. These deposits can be located on the crater floor, rim, wall, or central peak or in the ejecta deposit, and represent material that originally resided at depth and was subsequently excavated during the cratering process. The resulting craters make it possible to investigate the stratigraphy of Mercury’s upper crust. Studies of laboratory, terrestrial, and lunar craters provide a means to bound the depth of origin of spectrally distinct ejecta and central peak structures. Excavated red material (RM), with comparatively steep (red) spectral slope, and low-reflectance material (LRM) stand out prominently from the surrounding terrain in enhanced-color images because they are spectral end-members in Mercury’s compositional continuum. Newly imaged examples of RM were found to be spectrally similar to the relatively red, high-reflectance plains (HRP), suggesting that they may represent deposits of HRP-like material that were subsequently covered by a thin layer (∼1 km thick) of intermediate plains. In one area, craters with diameters ranging from 30 km to 130 km have excavated and incorporated RM into their rims, suggesting that the underlying RM layer may be several kilometers thick. LRM deposits are useful as stratigraphic markers, due to their unique spectral properties. Some RM and LRM were excavated by pre-Tolstojan basins, indicating a relatively old age (>4.0 Ga) for the original emplacement of these deposits. Detailed examination of several small areas on Mercury reveals the complex nature of the local stratigraphy, including the possible presence of buried volcanic plains, and supports sequential buildup of most of the upper ∼5 km of crust by volcanic flows with compositions spanning the range of material now visible on the surface, distributed heterogeneously across the planet. This emerging picture strongly suggests that the crust of Mercury is characterized by a much more substantial component of early volcanism than represented by the phase of mare emplacement on Earth’s Moon.  相似文献   

14.
This study examines a set of lunar domes with very low flank slopes which differ in several respects from the frequently occurring lunar effusive domes. Some of these domes are exceptionally large, and most of them are associated with faults or linear rilles of presumably tensional origin. Accordingly, they might be interpreted as surface manifestations of laccolithic intrusions formed by flexure-induced vertical uplift of the lunar crust (or, alternatively, as low effusive edifices due to lava mantling of highland terrain, or kipukas, or structural features). All of them are situated near the borders of mare regions or in regions characterised by extensive effusive volcanic activity. Clementine multispectral UVVIS imagery indicates that they do not preferentially occur in specific types of mare basalt. Our determination of their morphometric properties, involving a combined photoclinometry and shape from shading technique applied to telescopic CCD images acquired at oblique illumination, reveals large dome diameters between 10 and more than 30 km, flank slopes below 0.9°, and volumes ranging from 0.5 to 50 km3. We establish three morphometric classes. The first class, In1, comprises large domes with diameters above 25 km and flank slopes of 0.2°-0.6°, class In2 is made up by smaller and slightly steeper domes with diameters of 10-15 km and flank slopes between 0.4° and 0.9°, and domes of class In3 have diameters of 13-20 km and flank slopes below 0.3°. While the morphometric properties of several candidate intrusive domes overlap with those of some classes of effusive domes, we show that a possible distinction criterion are the characteristic elongated outlines of the candidate intrusive domes. We examine how they differ from typical effusive domes of classes 5 and 6 defined by Head and Gifford [Head, J.W., Gifford, A., 1980. Lunar mare domes: classification and modes of origin. Moon Planets 22, 235-257], and show that they are likely no highland kipukas due to the absence of spectral contrast to their surrounding. These considerations serve as a motivation for an analysis of the candidate intrusive domes in terms of the laccolith model by Kerr and Pollard [Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of laccoliths. J. Struct. Geol. 20(12), 1783-1793], to estimate the geophysical parameters, especially the intrusion depth and the magma pressure, which would result from the observed morphometric properties. Accordingly, domes of class In1 are characterised by intrusion depths of 2.3-3.5 km and magma pressures between 18 and 29 MPa. For the smaller and steeper domes of class In2 the magma intruded to shallow depths between 0.4 and 1.0 km while the inferred magma pressures range from 3 to 8 MPa. Class In3 domes are similar to those of class In1 with intrusion depths of 1.8-2.7 km and magma pressures of 15-23 MPa. As an extraordinary feature, we describe in some detail the concentric crater Archytas G associated with the intrusive dome Ar1 and discuss possible modes of origin. In comparison to the candidate intrusive domes, terrestrial laccoliths tend to be smaller, but it remains unclear if this observation is merely a selection effect due to the limited resolution of our telescopic CCD images. An elongated outline is common to many terrestrial laccoliths and the putative lunar laccoliths, while the thickness values measured for terrestrial laccoliths are typically higher than those inferred for lunar laccoliths, but the typical intrusion depths are comparable.  相似文献   

15.
The lunar photometric function, which describes the dependency of the observed radiance on the observation geometry, is used for photometric correction of lunar visible/near-infrared data. A precise photometric correction parameter set is crucial for many applications including mineral identification and reflectance map mosaics. We present, for the first time, spectrally continuous photometric correction parameters for both sides of the Moon for wavelengths in the range 0.5-1.6 μm and solar phase angles between 5° and 85°, derived from Kaguya (SELENE) Spectral Profiler (SP) data. Since the measured radiance also depends on the surface albedo, we developed a statistical method for selecting areas with relatively uniform albedos from a nearly 7000-orbit SP data set. Using the selected data set, we obtained empirical photometric correction parameter sets for three albedo groups (high, medium, and low). We did this because the photometric function depends on the albedo, especially at phase angles below about 20° for which the shadow hiding opposition effect is appreciable. We determined the parameters in 160 bands and discovered a small variation in the opposition effect due to the albedo variation of mafic mineral absorption. The consistency of the photometric correction was checked by comparing observations made at different times of the same area on the lunar surface. Variations in the spectra obtained were lower than 2%, except for the large phase angle data in mare. Lastly, we developed a correction method for low solar elevation data, which is required for high latitude regions. By investigating low solar elevation data, we introduced an additional correction method. We used the new photometric correction to generate a 1° mesh global lunar reflectance map cube in a wavelength range of 0.5-1.6 μm. Surprisingly, these maps reveal that high latitude (?75°) regions in both the north and south have much lower spectral continuum slopes (color ratio r1547.7nm/r752.8nm ? 1.8) than the low and medium latitude regions, which implies lower degrees of space weathering.  相似文献   

16.
Direct detection of water in its vapour phase in the tenuous lunar environment through in situ measurements carried out by the Chandra’s Altitudinal Composition Explorer (CHACE) payload, onboard the Moon Impact Probe (MIP) of Chandrayaan I mission vindicates the presence of water on the surface of the moon in form of ice at higher lunar latitudes inferred from IR absorption spectroscopy, (especially that of OH), by the Moon Mineralogy Mapper (M3) of Chandrayaan I. The quadrupole mass spectrometer based payload, CHACE, sampled the lunar neutral atmosphere every 4 s with a broad latitudinal (∼40°N to 90°S, with a resolution of ∼0.1°) and altitudinal (from 98 km up to impact on the lunar surface with a resolution of ∼0.25 km) coverage in the sunlit side of the moon for the first time. These two (CHACE and M3) complementary experiments are shown to collectively provide unambiguous signatures for the distribution of water in solid and gaseous phases in Earth’s moon.  相似文献   

17.
Differential scanning calorimetry indicates that adsorbed water and goethite, a product of hydrated ilmenite, are thermally stable over geologic time in the lunar polar regions. Adsorbed water can undergo burial as a result of several mechanisms, thereby achieving protection from sputtering or Lyman α radiation losses. Adsorbed, subsurface water layers on lunar dust, and any hydrated minerals present, could account for a majority of the hydrogen at the north lunar pole as well as account for a portion of that found at the south pole, particularly in small (<10 km) craters. Lunar ice, if it forms by condensation of water vapor in polar cold traps, will initially be in the form of amorphous solid water, and its rate of crystallization will depend on trap temperature and the composition of the surfaces upon which it has condensed. Between 95 and 110 K, diurnal temperature fluctuations cause surface ice deposits to migrate through the lunar regolith. Via such migration, stable and immobile layers of adsorbed water will be formed. In this temperature range, which can be expected at the margins of large craters and in smaller craters, any water resource would be a mixture of relatively unstable bulk ice and stable adsorbed water on subsurface dust and fines.  相似文献   

18.
Illumination conditions of the lunar polar regions using LOLA topography   总被引:3,自引:0,他引:3  
E. Mazarico  G.A. Neumann  M.T. Zuber 《Icarus》2011,211(2):1066-1081
We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to ∼75° latitude. The illumination of both polar regions extending to ∼80° can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains (∼10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as possible sites for near-continuous sources of solar power.  相似文献   

19.
We present the first in situ measurements of the secondary electron emission efficiency of lunar regolith, utilizing Lunar Prospector measurements of secondary electrons emitted from the negatively charged night side and accelerated upward by surface electric fields. By comparing measurements of secondary currents emitted from the surface and incident primary electron currents, we find that the secondary yield of lunar regolith is a factor of ∼3 lower than that measured for samples in the laboratory. This lower yield significantly affects current balance at the lunar surface and the resulting equilibrium surface potentials. This information must be folded into models of the near-surface plasma sheath, in order to predict the effects on dust and other components of the lunar environment, and ultimately determine the importance for surface exploration and scientific investigations on the Moon.  相似文献   

20.
Images returned by the MESSENGER spacecraft from the Mercury flybys have been examined to search for anomalous high-albedo markings similar to lunar swirls. Several features suggested to be swirls on the basis of Mariner 10 imaging (in the craters Handel and Lermontov) are seen in higher-resolution MESSENGER images to lack the characteristic morphology of lunar swirls. Although antipodes of large impact basins on the Moon are correlated with swirls, the antipodes of the large impact basins on Mercury appear to lack unusual albedo markings. The antipodes of Mercury’s Rembrandt, Beethoven, and Tolstoj basins do not have surface textures similar to the “hilly and lineated” terrain found at the Caloris antipode, possibly because these three impacts were too small to produce obvious surface disturbances at their antipodes. Mercury does have a class of unusual high-reflectance features, the bright crater-floor deposits (BCFDs). However, the BCFDs are spectral outliers, not simply optically immature material, which implies the presence of material with an unusual composition or physical state. The BCFDs are thus not analogs to the lunar swirls. We suggest that the lack of lunar-type swirls on Mercury supports models for the formation of lunar swirls that invoke interaction between the solar wind and crustal magnetic anomalies (i.e., the solar-wind standoff model and the electrostatic dust-transport model) rather than those models of swirl formation that relate to cometary impact phenomena. If the solar-wind standoff hypothesis for lunar swirls is correct, it implies that the primary agent responsible for the optical effects of space weathering on the Moon is solar-wind ion bombardment rather than micrometeoroid impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号