首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional calculations are presented for the distribution of the iogenic plasma source that is created near Io (i.e., within ∼24 satellite radii about Io) by O and S gases located in the volume above Io's exobase (i.e., corona and escaping extended neutral clouds, designated as the “Outer Region”) and are complementary to a preceding paper for calculations on a circumplanetary scale. The instantaneous pickup ion production rates for both electron impact and charge exchange have significant radial, north-south, and orbital-plane asymmetries beginning just inside and/or beyond Io's Lagrange sphere (5.81 Io radii) and, within the Lagrange sphere, are distributed nearly symmetrically about Io and are highly peaked about Io's exobase. The spatial natures of the corresponding pickup ion density, mass loading rates, and the pickup ion conductivity, current, and magnetic field are investigated. Spatially integrated rates are calculated for the corona volume and compared to larger Outer Region circumplanetary volumes and are also compared to estimates drawn from the scientific literature (but not modeled here) of the spatially integrated rates for pickup processes in the strongly perturbed “Inner Region” below the exobase. Within the corona volume, the spatially-integrated net-mass loading rate and total (electron impact and charge exchange) mass loading rate are only a factor of ∼3 and ∼5, respectively, smaller than those estimated for the Inner Region, whereas for the whole plasma torus, the Outer Region rates are larger or comparable to those estimated for the Inner Region. The total pickup ion gyration power supplied to the whole plasma torus is estimated to be significantly less than the power radiated by the plasma torus, indicating that an additional power source, likely a circumplanetary distribution of nonthermal electrons, is present.  相似文献   

2.
A two-dimensional kinetic model calculation for the water group species (H2O, H2, O2, OH, O, H) in Europa's atmosphere is undertaken to determine its basic compositional structure, gas escape rates, and velocity distribution information to initialize neutral cloud model calculations for the most important gas tori. The dominant atmospheric species is O2 at low altitudes and H2 at higher altitudes with average day-night column densities of 4.5×1014 and 7.7×1013 cm−2, respectively. H2 forms the most important gas torus with an escape rate of ∼2×1027 s−1 followed by O with an escape rate of ∼5×1026 s−1, created primarily as exothermic O products from O2 dissociation by magnetospheric electrons. The circumplanetary distributions of H2 and O are highly peaked about the satellite location and asymmetrically distributed near Europa's orbit about Jupiter, have substantial forward clouds extending radially inward to Io's orbit, and have spatially integrated cloud populations of 4.2×1033 molecules for H2 and 4.0×1032 atoms for O that are larger than their corresponding populations in Europa's local atmosphere by a factor of ∼200 and ∼1000, respectively. The cloud population for H2 is a factor of ∼3 times larger than that for the combined cloud population of Io's O and S neutral clouds and provides the dominant neutral population beyond the so-called ramp region at 7.4-7.8 RJ in the plasma torus. The calculated brightness of Europa's O cloud on the sky plane is very dim at the sub-Rayleigh level. The H2 and O tori provide a new source of europagenic molecular and atomic pickup ions for the thermal plasma and introduce a neutral barrier in which new plasma sinks are created for the cooler iogenic plasma as it is transported radially outward and in which new sinks are created to alter the population and pitch angle distribution of the energetic plasma as it is transported radially inward. The europagenic instantaneous pickup ion rates are peaked at Europa's orbit, dominate the iogenic pickup ion rates beyond the ramp region, and introduce new secondary plasma source peaks in the solution of the plasma transport problem. The H2 torus is identified as the unknown Europa gas torus that creates both the observed loss of energetic H+ ions at Europa's orbit and the corresponding measured ENA production rate for H.  相似文献   

3.
Ultraviolet and near-infrared observations of auroral emissions from the footprint of Io's magnetic Flux Tube (IFT) mapping to Jupiter's ionosphere have been interpreted via a combination of the unipolar inductor model [Goldreich, P., Lynden-Bell, D., 1969. Astrophys. J. 156, 59-78] and the multiply-reflected Alfvén wave model [Belcher, J.W., 1987. Science 238, 170-176]. While both models successfully explain the general nature of the auroral footprint and corotational wake, and both predict the presence of multiple footprints, the details of the interaction near Io are complicated [Saur, J., Neubauer, F.M., Connerney, J.E.P., Zarka, P., Kivelson, M.G., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 537-560; Kivelson, M.G., Bagenal, F., Kurth, W.S., Neubauer, F.M., Paranicas, C., Saur, J., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 513-536]. The auroral footprint brightness is believed to be a good remote indicator of the strength of the interaction near Io, indicating the energy and current strength linking Io with Jupiter's ionosphere. The brightness may also depend in part on local auroral acceleration processes near Jupiter. The relative importance of different physical processes in this interaction can be tested as Jupiter's rotation and Io's orbital motion shift Jupiter's magnetic centrifugal equator past Io, leading to longitudinal variations in the plasma density near Io and functionally different variations in the local field strength near Jupiter where the auroral emissions are produced. Initial HST WFPC2 observations found a high degree of variability in the footprint brightness with time, and some evidence for systematic variations with longitude [Clarke, J.T., Ben Jaffel, L., Gérard, J.-C., 1998. J. Geophys. Res. 103, 20217-20236], however the data were not of sufficient quality to determine functional relationships. In this paper we report the results from a second, more thorough study, using a series of higher resolution and sensitivity HST STIS observations and a model for the center to limb dependence of the optically thin auroral emission brightness based on measurements of the auroral curtain emission distribution with altitude. A search for correlations between numerous parameters has revealed a strong dependence between Io's position in the plasma torus and the resulting footprint brightness that persists over several years of observations. The local magnetic field strength near Jupiter (i.e. the size of the loss cone) and the expected north/south asymmetry in auroral brightness related to the path of currents generated near Io through the plasma torus en route to Jupiter appear to be less important than the total plasma density near Io. This is consistent with the near-Io interaction being dominated by collisions of corotating plasma and mass pickup, a long-standing view which has been subject to considerable debate. The brightness of the auroral footprint emissions, however, does not appear to be proportional to the incident plasma density or energy, and the interpretation of this result will require detailed modeling of the interaction near Io.  相似文献   

4.
S. Takahashi  H. Misawa  A. Morioka  R. Sood 《Icarus》2005,178(2):346-359
We report on two-dimensional imaging observations of D-line emissions from the extended distribution of iogenic sodium atoms with two fields of view (±20 RJ (narrow FOV) and ±400 RJ (wide FOV)) simultaneously by using a portable small telescope or camera lens. We derived dynamic feature of the band-shaped and spray-shaped distributions near Io's orbit by means of continuous observation. The observations confirm the phenomenological behavior of the sodium cloud on two spatial scales, as previously observed by Pilcher et al. [Pilcher, C.B., Smyth, W.H., Combi, M.R., Fertel, J.H., 1984. Astrophys. J. 287, 427-444], Schneider et al. [Schneider, N.M., Trauger, J.T., Wilson, J.K., Brown, D.I., Evans, R.W., Shemansky, D.E., 1991. Science 253, 1394-1397], and Mendillo et al. [Mendillo, M., Baumgartner, J., Flynn, B., Hughes, W.S., 1990. Nature 348, 312-314]. We also confirm an elongated oval emission distribution of the sodium nebula and derivation of its detailed east-west asymmetry depending on Io's phase angle, which was first noted by Flynn et al. [Flynn, B., Mendillo, M., Baumgartner, J., 1994. J. Geophys. Res. 99, 8403-8409]. We then did model analyses to investigate the source process for sodium atoms and the dynamics behind their distribution. We conclude that the essential of molecular ion mechanisms to the band-shaped distribution is in agreement with Wilson and Schneider [Wilson, J.K., Schneider, N.M., 1999. J. Geophys. Res. 104, 16567-16583]. We differ from Wilson et al. [Wilson, J.K., Mendillo, M., Baumgartner, J., Schneider, N.M., Trauger, J.T., Flynn, B., 2002. Icarus 157, 476-489] in finding that charge exchange process contributes more to the spray-shaped distribution and sodium nebula than sputtering does. These results derived the double-peaked velocity distribution of released sodium atoms, and re-confirmed the source rates in agreement with past studies.  相似文献   

5.
The MIMI CHEMS Instrument on the Cassini Orbiter detected Jovian pickup ions almost an AU upstream of Jupiter during the 2001 flyby. The clue to their planetary origin is the presence of singly ionized sulfur ions in quantities exceeding those expected from the interstellar gas entering the heliosphere (Nature 415 (2002) 994). Earlier modeling of the extended Jovian neutral gas disk suggested how the combination of the orbiting, localized Jovian source and interplanetary ionization processes should combine to produce a distinctive reservoir for heliospheric pickup ion production, different from its interstellar gas counterpart. Here the expected characteristics of pickup ions from the Jovian source are considered using a simplified model. The results provide an idea of the signatures in physical and phase space that reflect both the initial velocities and directionalities of the parent neutral population. Long-term measurements can easily test for these attributes given sufficient spatial and ion energy coverage.  相似文献   

6.
We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a “mirror” for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing technique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times.  相似文献   

7.
In February 2003, March 2003 and January 2004 Pele plume transmission spectra were obtained during Jupiter transit with Hubble's Space Telescope Imaging Spectrograph (STIS), using the 0.1″ wide slit and the G230LB grating. The STIS spectra covered the 2100-3100 Å wavelength regions and extended spatially along Io's limb encompassing the region directly above and northward of the vent of the Pele volcano. The S2 and SO2 absorption signatures evident in these data indicate that the gas signature at Pele was temporally variable, and that an S2 absorption signature was present ∼12° from the Pele vent near 6±5 S and 264±15 W, suggesting the presence of another S2 bearing plume on Io. Contemporaneous with the spectral data, UV and visible-wavelength images of the plume were obtained in reflected sunlight with the Advanced Camera for Surveys (ACS) prior to Jupiter transit. The dust scattering recorded in these data provide an additional qualitative measure of plume activity on Io, indicating that the degree of dust scattering over Pele varied as a function of the date of observation, and that there were several other dust bearing plumes active during the observations. We present constraints on the composition and variability of the gas abundances of the Pele plume as well as the plumes detected by ACS and recorded within the STIS data, as a function of time.  相似文献   

8.
Io's sodium clouds result mostly from a combination of two atmospheric escape processes at Io. Neutralization of Na+ and/or NaX+ pickup ions produces the “stream” and the “jet” and results in a rectangular-shaped sodium nebula around Jupiter. Atmospheric sputtering of Na by plasma torus ions produces the “banana cloud” near Io and a diamond-shaped sodium nebula. Charge exchange of thermal Na+ with Na in Io's atmosphere does not appear to be a major atmospheric ejection process. The total ejection rate of sodium from Io varied from 3×1026 to 25×1026 atoms/s over seven years of observations. Our results provide further evidence that Io's atmospheric escape is driven from collisionally thick regions of the atmosphere rather than from the exosphere.  相似文献   

9.
We investigate a new theory of the origin of the irregular satellites of the giant planets: capture of one member of a ∼100-km binary asteroid after tidal disruption. The energy loss from disruption is sufficient for capture, but it cannot deliver the bodies directly to the observed orbits of the irregular satellites. Instead, the long-lived capture orbits subsequently evolve inward due to interactions with a tenuous circumplanetary gas disk.We focus on the capture by Jupiter, which, due to its large mass, provides a stringent test of our model. We investigate the possible fates of disrupted bodies, the differences between prograde and retrograde captures, and the effects of Callisto on captured objects. We make an impulse approximation and discuss how it allows us to generalize capture results from equal-mass binaries to binaries with arbitrary mass ratios.We find that at Jupiter, binaries offer an increase of a factor of ∼10 in the capture rate of 100-km objects as compared to single bodies, for objects separated by tens of radii that approach the planet on relatively low-energy trajectories. These bodies are at risk of collision with Callisto, but may be preserved by gas drag if their pericenters are raised quickly enough. We conclude that our mechanism is as capable of producing large irregular satellites as previous suggestions, and it avoids several problems faced by alternative models.  相似文献   

10.
The ionosphere of Jupiter's satellite Io, discovered by the Pioneer 10 radio-occultation experiment, cannot easily be understood in terms of a model of a gravitationally bound, Earth-like ionosphere. Io's gravitational field is so weak that a gravitationally bound ionosphere would probably be blown away by the ram force of the Jovian magnetospheric wind — i.e., the plasma corotating in the Jovian magnetosphere. We propose here a model in which the material for Io's atmosphere and ionosphere is drawn from the ionosphere of Jupiter through a Birkeland current system that is driven by the potential induced across Io by the Jovian corotation electric field. We argue that the ionization near Io is caused by a comet-like interaction between the corotating plasma and Io's atmosphere. The initial interaction employs the critical velocity phenomenon proposed many years ago by Alfvén. Further ionization is produced by the impact of Jovian trapped energetic electrons, and the ionization thus created is swept out ahead of Io in its orbit. Thus, we suggest that what has been reported as a day-night ionospheric asymmetry is in fact an upstream-downstream asymmetry caused by the Jovian magnetospheric wind.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30th May, 1978.  相似文献   

11.
The deposition of energy, escape of atomic and molecular nitrogen and heating of the upper atmosphere of Titan are studied using a Direct Simulation Monte Carlo method. It is found that the globally averaged flux of deflected magnetospheric atomic nitrogen ions and molecular pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. The energy deposition in this region determines the atmospheric loss and the production of the nitrogen neutral torus. The temperature structure near the exobase is also calculated. It is found that, due to the inclusion of the molecular pickup ions more energy is deposited closer to the exobase than assumed in earlier plasma ion heating calculations. Although the temperature at the exobase is only a few degrees larger than it is at depth, the density above the exobase is enhanced by the incident plasma.  相似文献   

12.
A.J. Steffl  P.A. Delamere 《Icarus》2008,194(1):153-165
In this fourth paper in a series, we present a model of the remarkable temporal and azimuthal variability of the Io plasma torus observed during the Cassini encounter with Jupiter. Over a period of three months, the Cassini Ultraviolet Imaging Spectrograph (UVIS) observed a dramatic variation in the average torus composition. Superimposed on this long-term variation, is a 10.07-h periodicity caused by an azimuthal variation in plasma composition subcorotating relative to System III longitude. Quite surprisingly, the amplitude of the azimuthal variation appears to be modulated at the beat frequency between the System III period and the observed 10.07-h period. Previously, we have successfully modeled the months-long compositional change by supposing a factor of three increase in the amount of material supplied to Io's extended neutral clouds. Here, we extend our torus chemistry model to include an azimuthal dimension. We postulate the existence of two azimuthal variations in the number of superthermal electrons in the torus: a primary variation that subcorotates with a period of 10.07 h and a secondary variation that remains fixed in System III longitude. Using these two hot electron variations, our model can reproduce the observed temporal and azimuthal variations observed by Cassini UVIS.  相似文献   

13.
《Icarus》1987,69(3):519-531
The existence of an atmosphere at Io is presumed and used as a starting point to generate neutral coronae produced by magnetospheric ion sputtering from the exobase and to calculate injection of neutrals and ions into the plasma torus. Several different exobase heights, temperatures, and compositions are used to characterize the neutral and ion ejection processes associated with possible atmospheres. Collision ejection from the sputter-produced corona is shown to be an important supply of neutrals for all atmospheres considered. The net injection rates are compared with estimates of the rates required to populate the plasma torus. We show that by including the sputtered atmospheric corona produced by assuming an unattenuated incident ion flux, the supply rate to the torus can be satisfied with an exobase very close to the surface. An exobase close to the surface would imply that the atmosphere at Io is not robust enough to support a fully photodissociated corona and that a significant fraction of the incident plasma ions can penetrate to the surface, providing a sputter source of atmospheric gas. Conversely, a high exobase could only be consistent with the estimated supply rates if the incident plasma flux is attenuated or deflected. The results presented scale approximately with the magnitude of the incident ion flux and, therefore, can be used as knowledge of both the plasma flow and atmospheric composition improve.  相似文献   

14.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

15.
Yuan Lian  Adam P. Showman 《Icarus》2008,194(2):597-615
Three-dimensional numerical simulations of the atmospheric flow on giant planets using the primitive equations show that shallow thermal forcing confined to pressures near the cloud tops can produce deep zonal winds from the tropopause all the way down to the bottom of the atmosphere. These deep winds can attain speeds comparable to the zonal jet speeds within the shallow, forced layer; they are pumped by Coriolis acceleration acting on a deep meridional circulation driven by the shallow-layer eddies. In the forced layer, the flow reaches an approximate steady state where east-west eddy accelerations balance Coriolis accelerations acting on the meridional flow. Under Jupiter-like conditions, our simulations produce 25 to 30 zonal jets, similar to the number of jets observed on Jupiter and Saturn. The simulated jet widths correspond to the Rhines scale; this suggests that, despite the three-dimensional nature of the dynamics, the baroclinic eddies energize a quasi-two-dimensional inverse cascade modified by the β effect (where β is the gradient of the Coriolis parameter). In agreement with Jupiter, the jets can violate the barotropic and Charney-Stern stability criteria, achieving curvatures 2u/∂y2 of the zonal wind u with northward distance y up to 2β. The simulations exhibit a tendency toward neutral stability with respect to Arnol'd's second stability theorem in the upper troposphere, as has been suggested for Jupiter, although deviations from neutrality exist. When the temperature varies strongly with latitude near the equator, our simulations can also reproduce the stable equatorial superrotation with wind speeds greater than . Diagnostics show that barotropic eddies at low latitudes drive the equatorial superrotation. The simulations also broadly explain the distribution of jet-pumping eddies observed on Jupiter and Saturn. While idealized, these simulations therefore capture many aspects of the cloud-level flows on Jupiter and Saturn.  相似文献   

16.
《Planetary and Space Science》2006,54(13-14):1457-1471
Observations of oxygen pickup ions by the plasma analyzer on the Pioneer Venus Orbiter (PVO) Mission arguably launched broad interest in solar wind erosion of unmagnetized planet atmospheres, and its potential evolutionary effects. Oxygen pickup ions may play key roles in the removal of the oxygen excess left behind from the photodissociation of water vapor by enabling direct escape, additional sputtering of oxygen when they impact the exobase, and escape as energetic neutrals produced in charge exchange reactions with the ambient exospheric oxygen and hydrogen. Although the PVO observations were compromised by an ∼8 keV energy limit for O+ detection, a lack of ion composition capability, and the limited sampling and data rate of the plasma analyzer which was designed for solar wind monitoring, these measurements provide our best information about the extended O+ exosphere and wake at Venus. Here we show the full picture of the spatial distribution and energies of the O+ ion observations collected by the plasma analyzer during PVO's ∼5000 orbit tour. A model of O+ test particles launched in the circum-Venus fields described by an MHD simulation of the solar wind interaction is used to help interpret the PVO observations and to anticipate the expanded view of Venus O+ escape that will be provided by the ASPERA-4 experiment on Venus Express.  相似文献   

17.
The deposition of energetic electrons in Jupiter's upper atmosphere provides a means, via auroral observations, of monitoring electron and plasma wave activity within the magnetosphere. Not only does particle precipitation indicate a potential change in atmospheric chemistry, it allows for the study of episodic, pronounced flux enhancements in the energetic electron population. A study has been made of the effects of such electron injections into the jovian magnetosphere and of their ability to provide the source population for variations in diffuse auroral emissions. To identify the source region of precipitating auroral electrons, we have investigated the pitch-angle distributions of high-resolution Galileo Energetic Particle Detector (EPD) data that indicate strong flux levels near the loss cone. The equatorial source region of precipitating electrons has been determined from the locations of Galileo's in situ measurements by tracing magnetic field lines using the KK97 model. The primary source region for Jupiter's diffuse aurora appears to lie in the magnetic equator at 15-40 RJ, with the predominant contribution to precipitation flux (tens of ergs cm−2 s−1 sr−1) stemming from <30 RJ. Variability of flux for energetic electrons in this region is also important to the irradiation of surfaces and atmospheres for the Galilean moons: Europa, Ganymede, and Callisto. The average diffuse auroral precipitation flux has been shown to vary by as much as a factor of six at a given radial location. This variability appears to be associated with electron injection events that have been identified in high-resolution Galileo EPD data. These electron flux enhancements are also associated with increased whistler-mode wave activity and magnetic field perturbations, as detected by the Galileo Plasma Wave Subsystem (PWS) and Magnetometer (MAG), respectively. Resonant interactions with the whistler-mode waves cause electron pitch-angle scattering and lead to pitch-angle isotropization and precipitation.  相似文献   

18.
Dramatic changes in the brightness and shape of Jupiter's extended sodium nebula are found to be correlated with the infrared emission brightness of Io. Previous imaging and modeling studies have shown that varying appearances of the nebula correspond to changes in the rate and the type of loss mechanism for atmospheric escape from Io. Similarly, previous IR observational studies have assumed that enhancements in infrared emissions from Io correspond to increased levels of volcanic (lava flow) activity. In linking these processes observationally and statistically, we conclude that silicate volcanism on Io controls both the rate and the means by which sodium escapes from Io's atmosphere. During active periods, molecules containing sodium become an important transient in Io's upper atmosphere, and subsequent photochemistry and molecular-ion driven dynamics enhance the high speed sodium population, leading to the brightest nebulas observed. This is not the case during volcanically quiet times when omni-present atmospheric sputtering ejects sodium to form a modest, base-level nebula. Sodium's role as a “trace gas” of the more abundant species of sulfur (S) and oxygen (O) is less certain during volcanic episodes. While we suggest that volcanism must also affect the escape rates of S and O, and consequently their extended neutral clouds, the different roles played by lava and plume sources for non-sodium species are far too uncertain to make definitive comparisons at this time.  相似文献   

19.
We report on dust measurements obtained during the seventh orbit of the Galileo spacecraft about Jupiter. The most prominent features observed are highly time variable dust streams recorded throughout the Jovian system. The impact rate varied by more than an order of magnitude with a 5 and 10 hour periodicity, which shows a correlation with Galileo's position relative to the Jovian magnetic field. This behavior can be qualitatively explained by strong coupling of nanometer-sized dust to the Jovian magnetic field. In addition to the 5 and 10 h periodicities, a longer period which is compatible with Io's orbital period is evident in the dust impact rate. This feature indicates that Io most likely is the source of the dust streams. During a close (3,095 km altitude) flyby at Ganymede on 5 April 1997 an enhanced rate of dust impacts has been observed, which suggests that Ganymede is a source of ejecta particles. Within a distance of about 25 RJ(Jupiter radius, RJ= 71,492 km) from Jupiter impacts of micrometer-sized particles have been recorded which could be particles on bound orbits about Jupiter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Chihiro Tao  Sarah V. Badman 《Icarus》2011,213(2):581-592
Planetary aurora display the dynamic behavior of the plasma gas surrounding a planet. The outer planetary aurora are most often observed in the ultraviolet (UV) and the infrared (IR) wavelengths. How the emissions in these different wavelengths are connected with the background physical conditions are not yet well understood. Here we investigate the sensitivity of UV and IR emissions to the incident precipitating auroral electrons and the background atmospheric temperature, and compare the results obtained for Jupiter and Saturn. We develop a model which estimates UV and IR emission rates accounting for UV absorption by hydrocarbons, ion chemistry, and non-LTE effects. Parameterization equations are applied to estimate the ionization and excitation profiles in the H2 atmosphere caused by auroral electron precipitation. The dependences of UV and IR emissions on electron flux are found to be similar at Jupiter and Saturn. However, the dependences of the emissions on electron energy are different at the two planets, especially for low energy (<10 keV) electrons; the UV and IR emissions both decrease with decreasing electron energy, but this effect in the IR is less at Saturn than at Jupiter. The temperature sensitivity of the IR emission is also greater at Saturn than at Jupiter. These dependences are interpreted as results of non-LTE effects on the atmospheric temperature and density profiles. The different dependences of the UV and IR emissions on temperature and electron energy at Saturn may explain the different appearance of polar emissions observed at UV and IR wavelengths, and the differences from those observed at Jupiter. These results lead to the prediction that the differences between the IR and UV aurora at Saturn may be more significant than those at Jupiter. We consider in particular the occurrence of bright polar infrared emissions at Saturn and quantitatively estimate the conditions for such IR-only emissions to appear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号