首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
海南岛橡胶园是由“防护林—橡胶林(或间种热带作物)—地面人工或天然覆盖”多层复合的人工生态系统。由于太阳能量丰富(净辐射量大),胶林净生产力高。胶林的净收入热量,主要消耗于蒸散耗热,其次是湍流热交换;胶林内得到的净辐射量较小,湍流交换微弱,土壤热通量也不大。林内温度变化和缓、湿润、静风,橡胶人工林生态群落具有森林小气候生态环境的基本特征,其小气候效应类似于热带季雨林(次生林)。   相似文献   

2.
从全球能量收支项的概量计算中得知,由地面通过湍流方式向大气输送的热量,占大气顶入射的太阳辐射总量的6—7%。在湍流热交换理论中,多年来都引用下列关系(1) P=ρCpк_H(r-r_d) (1)其中P—湍流热通量,ρ—空气密度,Cp—空气定压比热,к_H—热量湍流系数,r_d—干绝热温度直减率,r—铅直温度梯度。由此式可以看出,在绝热大气中(r=r_d)垂直方向的湍流热输送为零:而在稳定层结大气中(r相似文献   

3.
西双版纳热带次生林林窗辐射特征初步研究   总被引:5,自引:0,他引:5  
利用西双版纳不同季节热带次生林林窗、林内及旷地不同波长太阳辐射的实测资料,比较分析了热带次生林窗不同波长辐射特征。分析得出:热带次生林窗中央与北侧林冠下的不同波长太阳辐射量值在中午前后迅速达到最大后又急速下降的现象明显;林窗内不同波长太阳辐射日总量值均大于林内,小于旷地;林窗中央和北侧林冠下相比较。一般是北侧林冠下的各辐射要素总量值高于林窗中央;林窗区域的总辐射日总量在干热季最高,雨季和雨季后期次之,雾凉季时最小;林窗中央和北侧林冠下的红外辐射及可见光在总辐射中所占份额随季节的变化而不同,充分显示了林窗辐射环境的异质性;与旷地和林内相比,林窗内各测点的红外辐射在总辐射中所占份额高于旷地却低于林内,而可见光占总辐射的比值情况正好相反。  相似文献   

4.
南海土台风生成及发展过程海气热通量交换特征   总被引:2,自引:1,他引:2  
利用1985—2007年西北太平洋热带气旋(TC)资料,定义生成于南海范围内并且发展强度达到热带风暴(TS)等级及以上的热带气旋为南海土台风,统计了南海土台风的季节演变特征,发现南海生成的TC约有68%发展成为土台风,其强度普遍较弱且与TC生成纬度和路径均有关。其频数的季节变化呈双峰结构,5月和7—9月是南海土台风的高发期。结合同期美国伍兹霍尔海洋研究所的1 °×1 °客观分析海气通量(WHOI_ OAFlux)日平均资料,分析了南海土台风生成及发展各阶段的海气热通量分布特征。结果表明:南海土台风形成过程中,海洋向大气释放的热通量逐日递增,台风眼南侧的海洋为台风形成提供主要能量来源,随着台风发展热通量高值区都沿顺时针方向向台风北侧传播,体现了台风外围涡旋罗斯贝波的能量频散特征,土台风形成后,热通量的加强不再明显。在土台风整个形成及发展过程中,净热通量、潜热通量和感热通量三者的变化较为一致,以潜热对净热的贡献为主,最大热量交换位于台风移动方向的南半圆,可能与南海西南季风作用有关。   相似文献   

5.
利用1979—2017年TropFlux海气热通量资料、ERA5再分析资料及HadISST资料,分析了冬季北大西洋涛动(North Atlantic Oscillation, NAO)与同期热带印度洋海气热通量的关系。结果表明,NAO指数与热带印度洋海气净热通量整体上呈负相关,意味着NAO为正位相时,海洋向大气输送热量,其显著区域主要位于热带西印度洋(50°~70°E,10°S~10°N)。净热通量的变化主要依赖于潜热通量和短波辐射的变化;潜热通量和短波辐射在NAO正(负)位相事件期间的贡献率分别为72.96%和61.48%(71.72%和57.06%)。NAO可通过Rossby波列影响印度洋地区局地大气环流,进而影响海气热通量;当NAO为正位相时,波列沿中低纬路径传播至印度洋地区,在阿拉伯海北部对流层高层触发异常反气旋环流。该异常反气旋性环流加强了阿拉伯高压,使得北印度洋偏北风及越赤道气流加强。伴随风速的加强,海面蒸发增强,同时加强的越赤道气流导致热带辐合带强度偏强,深对流加强引起对流层水汽和云量增多,进而引起海表下行短波辐射减少。  相似文献   

6.
岳平  张强  牛生杰  成华  王西育 《气象学报》2012,70(1):136-143
土壤热通量在半干旱草原下垫面能量平衡研究中极为重要,土壤热通量估计不够准确是导致地表能量不平衡的一个重要原因。利用2008年6—9月锡林郭勒草原主生长期地表辐射、通量和土壤温度梯度观测资料,研究中纬度半干旱草原下垫面地表能量平衡特征。首先,在分析能量平衡各分量月平均日变化特征的基础上,通过对土壤热流量板观测的5 cm深度土壤热通量(G)的相位前移,研究了土壤热通量相位滞后对地表能量平衡产生的影响;其次,利用谐波分析方法,通过计算地表土壤热通量(Gs),分析了地表到热流量板之间的土壤热量储存对地表能量平衡的影响。结果表明:(1)将土壤热通量相位前移30 min,湍流通量与可利用能量(Rn-G)线性回归的斜率从0.835增加到0.842,地表能量闭合率提高了0.7%,但仍有15.8%的能量不闭合;(2)考虑了地表到热流量板之间的土壤热量储存之后,湍流通量与可利用能量之间的回归斜率达到0.979,能量不闭合程度仅为2.1%。  相似文献   

7.
不同土壤类型的热通量变化特征   总被引:3,自引:0,他引:3  
利用2004—2007年中国科学院中国生态系统研究网络(CERN)生态站实测土壤热通量、辐射等资料,分析了不同土壤类型表层热通量的日变化和季节变化,以及不同土壤类型的热通量与总辐射、净辐射的关系。结果表明,由于导热率越大,热量传输就越快;热容量越小,热量传输也越快,造成土壤热通量的日较差和年较差较大,所以黄绵土和紫色土的表层热通量日较差最大(220~280 W.m-2),高寒草甸土和水稻土最小(55W.m-2);季节变化中土壤表层热通量的年较差变化范围在12~28W.m-2之间,灰漠土最大,为28W.m-2,热通量年较差从大到小依次为灰漠土、黄绵土、盐碱潮土、红壤土、紫色土、沼泽土、水稻土和高寒潮土,高寒潮土最小,为12W.m-2。不同土壤类型的热通量与总辐射、净辐射呈正相关关系,但不同土壤类型的土壤热通量在12:00(地方时)所占净辐射的比例各不相同,高寒草甸土最小,约为8%;黄绵土最大,为38%,多数土壤的热通量占净辐射的比例在15%~20%之间,这充分表明不同土壤类型表层热通量的传输存在很大差异。  相似文献   

8.
周明煜 《气象学报》1963,33(3):290-296
本文在考虑了热量对流輸送与层結间的相互作用基础上初步建立了对流热量輸送模式,并且作了数值計算.計算結果表明:热量輸送和大气层結之間的相互作用对热量輸送有着重要作用,在不稳定层結中热通量大大地超过稳定层結时的热通量。并且由于热量垂直輸送結果,大气层結开始时发生显著变化,最后趋向于中性层結.  相似文献   

9.
殷宗昭  林锦明  沈锺 《气象》1991,17(7):8-13
利用南极瑞穗站(日本)1979年近地面层微气象资料及净辐射、本站气压等资料进行了统计分析。采用鲍文比-能量平衡法求得月平均感热通量和潜热通量,采用热含法计算得出月平均雪面热通量,使用了直接测量的净辐射通量,研究了该站雪面热量平均特征。其中突出的特征是3—12月雪面净辐射值为负值,主要靠感热通量由大气向雪面补充热量。将本文结果与苏联少先队站1956年的结果进行了比较,得出相当一致的年变化规律。最后,得出瑞穗站雪面为一强冷源。  相似文献   

10.
TOGA型海-气耦合模式直接模拟的SST误差分析   总被引:1,自引:1,他引:0  
本文对一个TOGA(热带太平洋和全球大气)型耦合环流模式直接耦合30 a(1980—2009年)的模拟结果进行分析,发现模拟的热带太平洋海表温度存在严重的"气候漂移"现象。通过对模式海表温度控制方程中加热和冷却项的分析,特别是对海表热通量和风应力的分析,指出了两者的误差在热带太平洋海表温度的"气候漂移"现象中扮演的角色。为了进一步证实分析的结果,通过4个敏感性试验分析热通量和风应力对热带太平洋海表温度分布的作用,特别是热通量对西太平洋暖池的形成,而风应力对东太平洋冷舌的形成均有重要的作用以及纬向风应力和经向风应力对冷舌形成的相对贡献。  相似文献   

11.
Abstract

This study reports on testing of the peatland version of the Canadian Land Surface Scheme (CLASS) for simulating the energy balance of subarctic open woodland terrain. Model results are compared against several years of measured data from a site near Churchill, Manitoba. In contrast to most forest environments, the floor of the open forest plays a large role in total ecosystem energy exchange. This behaviour presents a significant challenge for land surface models like CLASS and their simplified treatment of vegetation canopies.

Simulations of summer energy balance for seven years encompassing a wide range of meteorological conditions produced consistent results. Root mean square errors for sensible and latent heat fluxes fell between 11 and 28 W m?2. CLASS consistently underestimated slightly the daily latent heat flux and overestimated the sensible heat flux, average mean bias errors being ‐7.6 and 9.1 W m?2, respectively. The soil heat flux was less well represented. In general, CLASS was able to capture the diurnal and seasonal behaviour of the measured fluxes under a range of conditions with reasonable accuracy.

In a full year simulation, CLASS reproduced the annual variations in energy balance with some discrepancies associated with snow accumulation and ablation periods. The model performance was sensitive to both snow density and specification of the surface cover. Recommendations for improving the model for subarctic woodlands and terrain types with similar features are discussed.  相似文献   

12.
Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12–24 March 1997) day and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m-2. The measurements of sensible heat flux within and above the forest revealed that the sensible heat flux from the snow surface is negligible and the sensible heat flux above the forest stems from warming of the trees. A simple model for the surface energy balance of a sparse forest is presented. The model treats the diffuse and direct shortwave (solar) radiation separately. It introduces a factor that accounts for the shading of the ground at low solar elevation angles, and a parameter that deals with the partial transparency of the forest.Input to the model are the direct and diffuse incoming shortwave radiation.Measurements of the global radiation (direct plus diffuse incoming shortwaveradiation) above the forest revealed a considerable attenuation of the globalradiation at low solar elevation. A relation for the atmospheric turbidity asfunction of the solar elevation angle is suggested. The global radiation wassimulated for a three month period. For conditions with a cloud cover of lessthan 7 oktas good agreement between model predictions and measurementswere found. For cloud cover 7 and 8 oktas a considerable spread can beobserved. To apply the proposed energy balance model, the global radiationmust be separated into its diffuse and direct components. We propose a simpleempirical relationship between diffuse shortwave and global radiation asfunction of cloud cover.  相似文献   

13.
A large-aperture scintillometer (LAS) was operated continuouslyduring a period of more than one year over a heterogeneous land surface in Central Europeat the transition between marine and continental climates. The LAS measurements of the refractiveindex structure parameter, CN 2, were used to estimate the sensible heat flux. Thiswas possible for about 60to 80% of the time under daytime conditions during thesummer, with lower values obtained for the cold season (October to March). Using datafrom a three-week long field experiment, the LAS-based heat flux was compared with a weighedaverage of local heat flux measurements over the main land use classes (forest, agriculture,water) in the area, resulting in reasonable agreement. LAS-based heat fluxes were then used forcomparison with the heat flux values of a numerical weather prediction model. An over-predictionof the model heat flux was found in summer but the modelled values were lower than the LASderived data during the cold season.  相似文献   

14.
Forest-Air Fluxes Of Carbon, Water And Energy Over Non-Flat Terrain   总被引:9,自引:0,他引:9  
A field study of surface-air exchange of carbon, water, and energy was conducted at a mid-latitude, mixed forest on non-flat terrain to investigate how to best interpret biological signals from the eddy flux data that may be subject to advective influences. It is shown that during periods of Southwest winds (sector with mild topography), the eddy fluxes are well-behaved in terms of energy balance closure, the existence of a constant flux layer, consistency with chamber observations and the expected abiotic controls on the fluxes. Advective influences are evident during periods with wind from a steep (15%) slope to the Northeast of the tower. These influences appear more severe on CO2 flux, particularly in stable air, than on the energy fluxes. Large positive flux of CO2 (> 23 mol m-2 s-1) occurs frequently at night. The annual sum of the carbon flux is positive, but the issue about whether the forest is a source of atmospheric carbon remains inconclusive.Attempts are made to assess vertical advectionusing the data collected on a single tower. Over the Southwestsector, vertical advection makes a statistically significant but small contribution to the 30-min energy imbalance and CO2 flux variations. Contributions by horizontal advection may be larger but cannot be verified directly by the current experimental method.  相似文献   

15.
Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle (D endroctonus ponderosae) outbreak and its associated blue stain fungi (Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine (Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater confidence in measurements for all dynamic disturbances.  相似文献   

16.
贺芳芳 《气象科学》2008,28(1):37-44
林带附近的热量平衡各分量的变化体现了林带对周围近地大气环境的影响.本文根据上海市郊林带附近温、湿、风梯度及净辐射观测资料,分析了林带附近冬夏晴天热量平衡各分量的特征,结果表明:夏季林带附近的净辐射比非林带小,冬季则比非林带大;林带对风速有减弱作用,林带附近的湍流输送较弱,因而林带附近热量和水汽量输送较小;林带附近有植物蒸腾,蒸散耗热量较大,为热量平衡中主要支出项;土壤热通量变化与近地面地温变化有关;林带附近较大的蒸散耗热和较弱的湍流输送有利于有利林带附近土壤水分的储存,并使周围湿润,但高温或低温时,湿度增加会引起人体不适,在林带规划上要充分考虑以上特点.  相似文献   

17.
Concurrent measurements of the surface energy balance components (net radiation, heat storage, and sensible and latent heat fluxes) were made in three communities (open water, Phragmites australis, Scirpus acutus) in a wetland in north-central Nebraska, U.S.A., during May-October, 1994. The Bowen ratio – energy balance method was used to calculate latent and sensible heat fluxes. This paper presents results from the open water area. The heat stored in water (G) was found to play a major role in the energy exchange over the water surface. During daytime, G consumed 45–60% of R n , the net radiation (seasonally averaged daytime G was about 127 W m–2). At night, G was a significant source of energy (seasonally averaged nighttime G was about -135 Wm). The diurnal pattern of latent heat flux ( E) did not follow that of R n . On some days, E was near zero during midday periods with large R n . The diurnal variability in E seemed to be significantly affected by temperature inversions formed over the cool water surface. The daily evaporation rate (E) ranged from 2 to 8 mm during the measurement period, and was generally between 70 and 135% of the equilibrium rate.  相似文献   

18.
This paper presents data concerning the energy budget in the surface layer in the Sahel region (a semi-desert area). The results are drawn from a measurement campaign made in the Niamey region in the Niger, in April–May 1984 (the Yantala Campaign). The sensible heat flux is computed with the profile method, the ground heat flux is deduced from measurement of the temperature field, and the radiative net flux is measured directly with a balancemeter. The latent heat flux, which is deduced from the energy budget balance is very weak and within the accuracy limit of the method. The diurnal variation of the net flux is symmetrical, with a maximum at noon. On the other hand, the sensible heat flux variation is asymmetrical, with an afternoon decrease much slower than the morning increase. After 3.30 pm, it becomes higher than the net flux. This is compensated for by the sign change of the ground heat flux, whose maximum is found in the morning at 11 am. The second part of this paper shows the importance of one term in the surface-layer energy budget: the long-wave radiative divergence between the ground and the top of the surface layer in high superadiabatic conditions. We show, with a radiative model on the one hand and direct measurement of the radiative divergence on the other hand, that this term reaches several tens of W m-2 in the superadiabatic conditions found in the Sahel region.   相似文献   

19.
The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号