首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
等深流影响的水道沉积体系的沉积特征及其沉积过程是当前深水沉积学研究的热点、难点和前沿科学问题,但研究程度较为薄弱。该文以北礁凹陷上新统(地震反射T20?T30)为研究对象,利用覆盖北礁凹陷局部的三维地震资料,采用均方根属性、相干属性、时间域构造,再结合地震切片等方法,研究北礁凹陷深水区上新统斜交斜坡(走向)的特殊水道沉积体系特征及其沉积过程。研究发现,该水道沉积体系分为早、晚两期,早期发育水道和片状、扇状溢堤沉积,晚期仅发育水道和片状溢堤沉积,其中扇状溢堤沉积仅发育在水道右侧弯曲处,片状溢堤沉积仅分布在水道左侧,水道始终与区域斜坡斜交,水道对称分布且无明显迁移现象。结合该时期北礁凸起发育等深流相关的丘状漂积体和环槽,认为该水道沉积体系特殊的形态主要受控于等深流与浊流交互作用的沉积结果:浊流流经水道,其上覆浊流溢出水道,形成溢岸浊流,在水道左侧,该溢岸浊流与等深流发生相向运动,被等深流“吹拂”到单侧,大面积分布,延伸千米,形成片状溢堤沉积;而在水道弯曲处(右侧),溢岸浊流与等深流发生相对运动,抑制溢岸浊流进一步扩展,形成相对小范围扇状溢堤沉积,该沉积结果与前人水槽实验结果相一致。  相似文献   

2.
近年来,深水水道已成为油气勘探的重要目标,加强深水水道内部沉积单元以及沉积演化的研究对于深水油气勘探来说至关重要。基于3D地震资料,利用地震属性、地震相等研究下刚果盆地深水水道的内部沉积单元及演化规律。研究表明,研究区深水水道发育底部滞留沉积、水道侧壁滑塌沉积、侧向加积体、堤岸沉积、废弃水道5种沉积单元。深水水道形成于复杂的多期侵蚀-充填过程,纵向演化可划分为水道过路侵蚀、侧向迁移水道、高弯度垂向加积水道、水道堤岸复合体和废弃水道5个阶段,各个阶段水道内充填结构和水道平面展布特征呈现有规律的变化。水道的5个演化阶段是一个水道完整的演化模式,海平面变化、重力流供给、陆坡均衡剖面等共同控制着深水水道的演化。  相似文献   

3.
李磊  邹韵  张鹏  阮昱 《海洋地质前沿》2019,35(10):23-35
深水水道作为深水沉积体系中重要的沉积单元之一,一直是深水沉积和地层研究的热点。基于西非几内亚湾Rio Muni盆地陆坡区的高分辨率三维地震资料,利用地震属性及参数定量分析法对第四系陆坡重力流水道的剖面和平面形态进行了研究,旨在探索深水水道内部结构的相互影响和外部因素对水道形态的控制,丰富深水沉积学理论。研究表明:坡度及距水道头部距离影响了深水水道的剖面和平面形态,随着坡度变缓,距水道头部距离越远,水道宽度越小;堤岸于中、下陆坡开始发育,水道堤岸脊的高程差及内、外弯曲带都不同程度地影响了堤岸的长度;水道的弯曲度控制着堤岸脊高程差的变化,同时作用于堤岸长度的变化;样本水道为高弯曲水道,且弯曲度受地形坡度控制。  相似文献   

4.
重力流分支水道是下刚果盆地中新统发育的典型深水沉积单元之一.利用相干时间切片、RMS均方根振幅和3D振幅可视化等地球物理手段识别出工区内发育的深水弯曲水道,论述了复合水道砂体内部充填结构,精细刻画了深水水道砂体的内幕结构,并利用地质异常体处理与三维可视化技术相结合追踪出工区内发育的水道砂体,描述了其平面分布特征和储层特征.工区内主要发育高弯度重力流分支水道,根据深水水道充填成因分类将其进一步划分为侵蚀充填型和侵蚀—加积型水道复合体;大型侵蚀水道内部由多期充填,主要由滑塌形成的旋转滑块和碎屑流、叠置水道及水道—天然堤沉积组成;并在三维可视化中识别出了多期水道砂体,探讨了水道砂体的地震反射特征和测井响应特征.  相似文献   

5.
鲁武马盆地中中新统复合水道体系表现出复杂的充填特征及时空演化规律。以地震资料为基础,借助三维可视化、沿层相干切片、层间振幅属性提取等多种地震解释技术,总结地震分辨率下复合水道体系内各个级别水道的平面分布规律,建立纵、横向演化模式。鲁武马盆地中中新统复合水道体系可以细分成4个可识别的级别:复合水道体系,水道复合体,复合水道及水道。沿水流方向,复合水道体系由强限制型向局部限制型演化,在较远端分化为三期独立水道复合体;水道复合体表现出4种沉积方式,2种方式与复合水道体系一致且同步发育,另外2种为较弱限制型和非限制型。复合水道体系内深水沉积主要受海平面变化、地形坡度以及底流作用的影响,沉积规模、搬运距离、沉积位置、延伸方向及外部形态随时空发生改变。复合水道体系呈现出复杂的多级别充填特征,垂向叠置样式随沉积位置的差异而不同,早期水道复合体末期的分布影响后期水道复合体发育的位置。  相似文献   

6.
琼东南盆地北礁凹陷梅山组顶部丘形反射特征及成因分析   总被引:4,自引:3,他引:1  
南海琼东南盆地北礁凹陷中中新统梅山组顶部丘形反射目前引起广泛关注,前人推测为生物礁、重力蠕动与底流叠加成因、等深积丘等。本文通过钻井资料、二维、三维地震资料精细刻画丘形反射(残丘)和丘间水道特征及其成因。残丘及水道在北礁凸起不发育,在边缘斜坡中部和高地较发育,且有向高地两边规模减小趋势,不具对称性,残丘和水道呈平行-亚平行近E-W向展布,局部有合并分叉现象,与北礁凸起走向呈一小角度;丘宽562~1 223 m,丘高29~87 m,丘长10 km左右,存在丘翼削蚀,水道底蚀现象。地震属性分析表明三维工区西南部残丘间水道由砂泥岩互层充填,形成长条形强振幅,而残丘为中-低振幅;地震、钻井资料分析表明丘形反射(残丘)由钙质泥岩和泥岩组成,属于半深海沉积,且残丘内部波阻抗为5.0×106~6.5×106kg/m3·m/s,低于火山岩、灰岩波阻抗,属于砂泥岩地层范畴;根据梅山组下段水道由西向东强振幅变弱、分叉、前积反射和海山附近底流(等深流)沉积剥蚀特征综合判定底流古流向自西向东,根据海山两翼地震反射特征推测底流可追溯至晚中新世早期(11.6 Ma BP),综合分析认为,研究区中中新统梅山组丘形反射是晚中新世早期底流切割梅山组地层形成的残丘。  相似文献   

7.
西沙海域碳酸盐台地周缘水道沉积体系   总被引:3,自引:1,他引:2  
高分辨率地震资料显示,南海北部西沙海域碳酸盐台地周缘广泛发育水道沉积体系。礁缘水道底界面表现出强反射特征,内部充填弱-强、连续性好的地震相,可见底部杂乱反射特征;斜坡水道在地震剖面上表现为横向上连续发育的"V"型特征,且下切深度较浅。西沙隆起与广乐隆起之间的南北向低洼地带发育大型深水水道,并且受古地貌高点影响,水道分为南北两个分支。北分支水道可分为5期,且水道迁移现象明显;南分支水道可分为4期,水道以充填强振幅、连续性好的浊流沉积体和弱振幅、杂乱的块体搬运体系(Mass Transport Deposits,MTDs)为特征,每期水道均表现出侵蚀-充填-废弃的旋回性。分析认为西沙碳酸盐台地周缘水道沉积物源来自西沙隆起和广乐隆起的碳酸盐台地和生物礁碎屑及由火成作用产生的火成岩碎屑。西沙-广乐碳酸盐台地水道相互贯通,构成台地-斜坡-深水的水道沉积体系,为碳酸盐岩、生物礁及火山碎屑向台地周缘输送提供了良好的通道。  相似文献   

8.
目前琼东南盆地北礁凹陷中中新统梅山组顶部丘形反射引起广泛关注,但对其成因有不同认识。本文通过高精度二维、三维地震、钻井资料,研究丘形反射的特征。研究表明北礁地区梅山组顶部发育近东西向展布的长条形丘体,丘间为水道,丘内为中-弱振幅的地震反射,与西南部强振幅水道砂岩形成鲜明的对比,波阻抗反演揭示丘内为低波阻抗,属泥岩范畴。梅山组塑性丘内地层发生重力扩展,在其上覆的脆性地层(强振幅砂岩和弱振幅泥岩)发育多边形断层,反推出梅山组形成于深水环境,丘为泥丘,沉积环境分析也认为北礁凹陷中中新世为半深海沉积,梅山组的丘-谷分别对应上覆地层的谷-丘,认为是底流剥蚀/沉积成因。本文的研究对南海北部丘形反射的认识有重要意义,并可降低油气探勘风险。  相似文献   

9.
西沙海槽沉积模式   总被引:1,自引:0,他引:1  
晚中新世琼东南盆地快速构造沉降,沉积欠补偿形成了西沙海槽。西沙海槽上部高陡带为悬浮沉积体系,下部低缓带为浊流滑塌沉积体系,槽底平缓带为河流沉积体系。不同于浊流沉积小而散,深海河流沉积为稳定的贯穿整个海槽的大储层。由于深海河流沉积体系稳、远、大的特点,其注定成为世界深水油气勘探的主要目标。  相似文献   

10.
深水重力流的沉积类型及储集性能一直是沉积学领域研究的重点。此次研究以野外露头为基础,结合室内薄片分析,对鄂尔多斯盆地西缘奥陶系拉什仲组深水重力流沉积类型与储集性能进行了详细研究。拉什仲组以灰绿色砂岩及灰黑色泥岩为主,另见少量的粉砂岩和砾岩。槽模、交错层理、粒序层理及包卷层理等发育。通过岩性、沉积构造、古生物等分析,认为拉什仲组沉积环境为深水,沉积相主要为海底扇,水道和朵叶微相较为发育。水道可进一步分为复合型、垂向加积型、迁移型。复合型水道岩性以砂岩为主,粒度较粗,水道内部发育次级水道。垂向加积型水道岩性为细砂岩和粉砂岩,以垂向加积沉积为主。迁移型水道定向迁移特征明显,侧积体发育。从下至上,砂岩含量先减少,再增加,大致反映相对海平面升—降旋回,海底扇总体呈退积沉积序列。孔隙度及渗透率测试结果表明,复合型水道储集潜力最好,朵叶和迁移型水道次之。  相似文献   

11.
Based upon 2D seismic data, this study confirms the presence of a complex deep-water sedimentary system within the Pliocene-Quaternary strata on the northwestern lower slope of the Northwest Sub-Basin, South China Sea. It consists of submarine canyons, mass-wasting deposits, contourite channels and sheeted drifts. Alongslope aligned erosive features are observed on the eastern upper gentle slopes (<1.2° above 1,500 m), where a V-shaped downslope canyon presents an apparent ENE migration, indicating a related bottom current within the eastward South China Sea Intermediate Water Circulation. Contourite sheeted drifts are also generated on the eastern gentle slopes (~1.5° in average), below 2,100 m water depth though, referring to a wide unfocused bottom current, which might be related to the South China Sea Deep Water Circulation. Mass wasting deposits (predominantly slides and slumps) and submarine canyons developed on steeper slopes (>2°), where weaker alongslope currents are probably dominated by downslope depositional processes on these unstable slopes. The NNW–SSE oriented slope morphology changes from a three-stepped terraced outline (I–II–III) east of the investigated area, into a two-stepped terraced (I–II) outline in the middle, and into a unitary steep slope (II) in the west, which is consistent with the slope steepening towards the west. Such morphological changes may have possibly led to a westward simplification of composite deep-water sedimentary systems, from a depositional complex of contourite depositional systems, mass-wasting deposits and canyons, on the one hand, to only sliding and canyon deposits on the other hand.  相似文献   

12.
Using an integrated multi-beam bathymetry, high-resolution seismic profile, piston core, and AMS 14C dating data set, the current study identified two sediment wave fields, fields 1 and 2, on the South China Sea Slope off southwestern Taiwan. Field 1 is located in the lower slope, and sediment waves within it are overall oriented perpendicular to the direction of down-slope gravity flows and canyon axis. Geometries, morphology, and internal seismic reflection configurations suggest that the sediment waves in field 1 underwent significant up-slope migration. Field 2, in contrast, is located more basinward, on the continental rise. Instead of having asymmetrical morphology and discontinuous reflections as observed in field 1, the sediment waves in field 2 show more symmetrical morphology and continuous reflections that can be traced from one wave to another, suggesting that vertical aggradation is more active and predominant than up-slope migration.Three sediment wave evolution stages, stage 1 through stage 3, are identified in both field 1 and field 2. During stage 1, the sediment waves are built upon a regional unconformity that separates the underlying mass-transport complexes from the overlying sediment waves. In both of these two fields, there is progressive development of the sediment waves and increase in wave dimensions from the oldest stage 1 to the youngest stage 3, even though up-slope migration is dominant in field 1 whereas vertical aggradation is predominant in field 2 throughout these three stages.The integrated data and the depositional model show that the upper slope of the study area is strongly dissected and eroded by down-slope gravity flows. The net result of strong erosion is that significant amounts of sediment are transported further basinward into the lower slope by gravity flows and/or turbidity currents. The interactions of these currents with bottom (contour) currents induced by the intrusion of the Northern Pacific Deep Water into the South China Sea and preexisting wavy topography in the lower slope result in the up-slope migrating sediment waves in field 1 and the contourites as observed from cores TS01 and TS02. Further basinward on the continental rise, turbidity currents are waned and diluted, whereas along-slope bottom (contour) currents are vigorous and most likely dominate over the diluted turbidity currents, resulting in the vertically aggraded sediment waves in field 2.The results from this study also provide the further evidence for the intrusion of the Northern Pacific Deep Water into the South China Sea and suggest that this intrusion has probably existed and been capable of affecting sedimentation in South China Sea at least since Quaternary.  相似文献   

13.
Numerous elongated mounds and channels were found at the top of the middle Miocene strata using 2D/3D seismic data in the Liwan Sag of Zhujiang River Mouth Basin(ZRMB) and the Beijiao Sag of Qiongdongnan Basin(QDNB). They occur at intervals and are rarely revealed by drilling wells in the deepwater areas. Origins of the mounds and channels are controversial and poorly understood. Based on an integrated analysis of the seismic attribute, palaeotectonics and palaeogeography, and drilling well encountering a mound, research results show that these mounds are dominantly distributed on the depression centres and/or slopes of the Liwan and Beijiao sags and developed in a bathyal sedimentary environment. In the Liwan and Beijiao sags, the mounds between channels(sub) parallel to one another are 1.0–1.5 km and 1.5–2.0 km wide, 150–300 m and 150–200 m high, and extend straightly from west to east for 5–15 km and 8–20 km, respectively. Mounds and channels in the Liwan Sag are parallel with the regional slope. Mounds and channels in the Beijiao Sag, however, are at a small angle to the regional slope. According to internal geometry, texture and external morphology of mounds, the mounds in Beijiao Sag are divided into weak amplitude parallel reflections(mound type I), blank or chaotic reflections(mound type II), and internal mounded reflections(mound type Ⅲ). The mounds in Liwan Sag, however, have the sole type, i.e., mound type I. Mound type I originates from the incision of bottom currents and/or gravity flows. Mound type II results from gravity-driven sediments such as turbidite. Mound type Ⅲ is a result of deposition and incision of bottom currents simultaneously. The channels with high amplitude between mounds in the Beijiao and Liwan sags are a result of gravity-flow sediments and it is suggested they are filled by sandstone.Whereas channels with low-mediate amplitudes are filled by bottom-current sediments only in the Beijiao Sag,where they are dominantly composed of mudstone. This study provides new insights into the origins of the mounds and channels worldwide.  相似文献   

14.
The frequency of turbidity currents in Bute Inlet and Knight Inlet (British Columbia, Canada) was monitored. A prototype instrument (turbidity event detector) was deployed adjacent to prominent incised sea-floor channels. Approximately 25–30 turbidity currents occur annually. They appear closely correlated to periods of higher river discharge into the heads of the fjords. Two peaks in both discharge and turbidity current fequency occur, one in response to snow melt in late June–early July, the other to glacier melt in August. Virtually no turbidity currents were observed in winter. River mouth bars, channel deposits, and other deltaic sediments build up during lower discharge periods and are swept onto the steep delta front and into subaqueous channels, along with bedload, during floods.  相似文献   

15.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   

16.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

17.
In the westernmost Ionian Sea lies a steep, tectonically active marine basin influenced by turbidity currents generated by terrigenous river input from the adjacent mountains and strong tidal currents propagating through the Strait of Messina. Like many young marine rifts, the basin is lined by steep streams draining the uplifting coasts and supplying sediment across narrow shelves. However, unlike many rifts, this basin is semi-enclosed. The present study explores the seabed morphology and sediment structures in this complex environmental setting, based on multibeam sonar, chirp profiler and seismic reflection data collected in 2006. Offshore channels include many that can be directly linked to onshore streams, suggesting that hyperpycnal flows are important for their formation. Near the Strait of Messina in depths shallower than 400 m, the channels are subdued, plausibly explained as an effect of strong tidal currents. The Messina Channel is characterised by abundant mass-wasting features along its outer bends, particularly on the Calabrian side. Coincidence of the channel course with faults suggests that the channel is structurally controlled in places. The chirp profiles generally show only shallow penetration, the evidence for coarse texture being consistent with the steep gradient of the basin that inhibits deposition from turbidity currents. By contrast, some locally discontinuous mounds exhibiting layered sub-bottom reflectors in the chirp profiles are interpreted as modern levee deposits formed from channelised turbidity current overspill. Overall, this semi-enclosed basin shows little evidence of substantial accumulations associated with modern turbidity current activity, any contemporaneous sediment supply evidently bypassing the area to be deposited in the Ionian Trench; as a consequence, this trench should be an archive of local slope failure and flood events.  相似文献   

18.
Sand banks around straits are used as a commercial fishing ground. In order to clarify the mechanism of sand bank formation, the Lagrangian method was used to measure currents and turbidity around the banks in the Neko Seto Sea in the Seto Inland Sea of Japan. A neutrally buoyant float released in the Neko Seto Strait at the maximum tidal flow stage was engulfed in a pair of tidal vortices and moved around one of the sand banks. The vertical distribution of turbidity, which was measured by the vessel moving with the neutral float, showed an extremely high turbidity in the bottom layer of this bank area. According to the analysis of these observational data, the process of sand bank formation around straits is as follows. The tidal vortex transports water mass with suspended materials (including sand) which are whirled up at the bottom by the tidal jet. In the decaying stage of the vortex, the materials in the bottom layer are gathered in the central part of the vortex by the secondary convergent flow in the vortex. Among these materials, a large-size sand particle with a high critical erosion velocity accumulates at the bottom and forms banks. The distribution of bottom sediment and the thickness of alluvium support this result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号