首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present laboratory and field evidence that in mountainous catchment‐fan systems persistent alluvial fanhead aggradation and trenching may result from infrequent, large sediment inputs. We suggest that the river‐fan systems along the fault‐bounded range front of the western Southern Alps, New Zealand, are likely to be in a dynamic equilibrium on ≥103‐yr timescales, superimposed on which their fanheads undergo long‐term cumulative episodic aggradation. These fanheads are active only in rare events, do not take part in the usual behaviour of the catchment‐fan system and require much longer to exhibit dynamic equilibrium than the rest of the fan. These findings (1) increase our knowledge of the effects of extreme events on alluvial fan morphodynamics in humid climates, (2) question the general applicability of inferring past climatic or tectonic regimes from alluvial‐fan morphology and stratigraphy and (3) provide a conceptual basis for hazard zonation on alluvial fans. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
When a sediment laden river reaches a flat basin area the coarse fraction of their sediment load is deposited in a cone shaped structure called an alluvial fan. In this article we used the State Space Soil Production and Assessment Model (SSSPAM) coupled landform–soilscape evolution model to simulate the development of alluvial fans in two- and three-dimensional landforms. In SSSPAM the physical processes of erosion and armouring, soil weathering and sediment deposition were modelled using state-space matrices, in both two and three dimensions. The results of the two-dimensional fan showed that the fan grew vertically and laterally keeping a concave up long profile. It also showed a downstream fining of the sediments along the fan profile. Both of these observations are in agreement with available literature concerning natural and experimental fan formations. Simulations with the three-dimensional landform produced a fan with a semicircular shape with concave up long profiles and concave down cross profiles which is typical for fans found in nature and ones developed in laboratory conditions. During the simulation the main channel which brings sediment to the fan structure changed its position constantly leading to the semicircular shape of the fan. This behaviour is similar to the autogenic process of ‘fanhead trenching’ which is the major mechanism of sediment redistribution while the fan is developing. The three-dimensional fan simulation also exhibited the downstream fining of sediments from the fan apex to the peripheries. Further, the simulated fan also developed complex internal sediment stratification which is modelled by SSSPAM. Currently such complex sediment stratification is thought to be a result of allogenic processes. However, this simulation shows that, such complex internal sediment structures can develop through autogenic processes as well. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

5.
The downstream diminution in sediment size in a braided reach of the proglacial Sunwapta River, Alberta, Canada, was examined statistically to identify the sources of the observed variation about an expected exponential relationship between clast size and distance. Major deviations from this hypothetical relationship, such as a relative increase in grainsize, may be attributed to the effects of tributary sediment inputs and downstream changes in channel behaviour, whilst local variation is associated with complex patterns of sediment deposition observed at a bar scale. A comparison of diminution coefficients, calculated for separate lithologies and for subreaches along the river, with those obtained from previous studies, is used as an indicator of river behaviour and sediment transport processes. It is shown that rates of diminution vary within the reach in response to differing rates of aggradation and to the backwater effects created by tributary alluvial fans. The relatively high values for the calculated diminution coefficients indicate that processes of differential transport are the main cause of the grain size decrease.  相似文献   

6.
Alluvial fans and debris cones link two zones of the fluvial system (e.g. hillslope gully systems to stream channels; mountain catchment sediment source areas to main river systems or to sedimentary basins) and therefore have important coupling or buffering roles. These roles may be both functional and preservational. The functional role includes debris‐cone coupling, which controls sediment supply from hillslope gully systems to stream channels, influencing channel morphology. Coupling through larger alluvial fans, expressed by fanhead trenching, causes a distal shift in sedimentation zones, or when expressed by through‐fan trenching, causes complete sediment by‐pass. The preservational role stems from the fact that fans and cones are temporary sediment storage zones, and may preserve a record of source–area environmental change more sensitively than would sediments preserved further downsystem. Fan coupling mechanisms include distally‐induced coupling (basal scour, ‘toe cutting’, marginal incision) and proximally‐induced coupling (fanhead and midfan trenching). These mechanisms lead initially to partial coupling, either extending the immediate sediment source area to the stream system or shifting the focus of sedimentation distally. Complete coupling involves transmission of sediment from the feeder catchment through the fan environment into the downstream drainage or a sedimentary basin. The implications of coupling relate to downstream channel response, fan morphology, sedimentation patterns and vertical sedimentary sequences. Temporal and spatial scales of coupling are related, and with increasing scales the dominant controls shift from storm events to land cover to climatic and base‐level change and ultimately to the relationships between tectonics and accommodation space. Finally, future research challenges are identified. Modern dating techniques and sophisticated analysis of remotely sensed data can greatly improve our understanding of fan dynamics, and should lead to better cross‐scale integration between short‐term process‐based approaches and long‐term sedimentological applications, while maintaining high quality field‐based observations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A mathematical model which estimates the scale-independent sediment surface profile of alluvial fans has been developed. This model utilizes a diffusive sediment transport model and an unsteady, radial flow, conservation relationship. These equations are approximately solved assuming a quasi-steady-state closure with appropriate modelling assumptions for two end member fan types: (1) fans where most of the fan surface is depositionally active (denoted here as ‘homogeneous’) and (2) fans characterized by channelling and sediment sorting processes. The fundamental result for these two fan types is a dimensionless sediment profile relationship which approximates most fan surfaces. The model suggests that the overall dimensionless morphology of alluvial fans is governed more by fundamental diffusion principles in sediment deposition than by individual environmental or basin characteristics. Additionally, this work potentially can be extended to model temporal variation in fan development. Preliminary comparison with alluvial fan profiles is reasonable, indicating that this model provides useful qualitative and quantitative information relating to alluvial fan process and morphology. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Pressures on braided river systems in New Zealand are increasing due to anthropogenic stresses such as demand for irrigation water, braidplain conversion to farmland and invasive vegetation, as well as extreme natural events associated with earthquakes and climate change. These pressures create issues around preserving braided river physical environments and associated ecosystems, and managing hazards such as floods, aggradation and erosion. A need for more robust understanding and quantification of braided river morphodynamic processes underpins many of these issues. Here, we present eight morphodynamic research challenges to service this need. The first four research challenges relate to managing aggradation-related flooding hazards; the last four address issues stem largely from recent dairy expansion, which has created huge pressure to take land and irrigation water from the alp-fed braided rivers and to alter flow regimes at their mouths. Hāpua, the freshwater lagoons found where most braided rivers meet the coast, show complex morphodynamic behaviour in response to the interplay of river and coastal processes, and their special ecosystems are sensitive to river flow and sediment load changes. We discuss how physical laboratory experiments and novel numerical modelling can help to understand the morphological processes braided rivers undergo, and we show how those research advances could inform planning and legal decisions to regulate land rights and irrigation water allocation on New Zealand's braidplains. We illustrate these environmental and engineering issues and research challenges with examples from the Kowhai, Waiho, Waiau, Rangitata and Hurunui Rivers. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
The Ganga River is one of the largest river systems in the world that has built extensive alluvial plains in northern India. The stretch of the Lower Ganga River is vulnerable to siltation because of: (a) the naturally low slope in the alluvial stretch; (b) the confluence of several highly sediment-charged rivers such as the Ghaghra, Gandak, and Kosi; and (c) the reduction in non-monsoon flows because of upstream abstractions of both surface and groundwater. Additionally, the Farakka barrage has impacted the morphology of the Ganga River significantly, both upstream and downstream of the barrage. Large-scale siltation in several reaches has reduced the channel capacity, leading to catastrophic floods in this region even at low discharges. This work has utilized historical remote sensing data and UAV surveys to reconstruct channel morphodynamics and compute sediment volumes accumulated in the channel belt along the Lower Ganga River between Buxar and Farakka. The work was carried out by dividing the total length of the river into four continuous stretches: (a) Buxar–Gandhighat (GW1, 160 km); (b) Gandhighat–Hathidah (GW2, 106 km); (c) Hathidah–Azmabad (GW3, 182 km); and (d) Azmabad–Farakka (GW4, 132 km). We document that major ‘hotspots’ of siltation have developed in several reaches of the Lower Ganga during the last four to five decades. Sediment budgeting using planform maps provides estimates of ‘extractable’ volumes of sediment in GW1, GW2, GW3, and GW4 as 656 ± 48, 706 ± 52, 876 ± 71, and 200 ± 85 Mm3, respectively. These estimates are considerably lower than those computed from the hydrological approach using observed suspended sediment load data, which assumes uniform sedimentation between two stations. Further, our approach provides reach-scale hotspots of aggradation and estimates of extractable sediment volumes, and this can be very useful for river managers to develop a strategic sediment management plan for the given stretch of the Ganga River.  相似文献   

10.
Since the end of the post‐glacial sea level rise 6800 years ago, progradation of river mouths into estuaries has been a global phenomenon. The responses of upstream alluvial river reaches to this progradation have received little attention. Here, the links between river mouth progradation and Holocene valley aggradation are examined for the Macdonald and Tuross Rivers in south‐eastern Australia. Optical and radiocarbon dating of floodplain sediments indicates that since the mid‐Holocene sea level highstand 6800 years ago vertical floodplain aggradation along the two valleys has generally been consistent with the rate at which each river prograded into its estuary. This link between river mouth progradation and alluvial aggradation drove floodplain aggradation for many tens of kilometres upstream of the estuarine limits. Both rivers have abandoned their main Holocene floodplains over the last 2000 years and their channels have contracted. A regional shift to smaller floods is inferred to be responsible for this change, though a greater relative sea level fall experienced by the Macdonald River since the mid‐Holocene sea level highstand appears to have been an additional influence upon floodplain evolution in this valley. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The slope of an alluvial fan increases with increasing debris size and sediment concentration in the flow, and decreases with increasing discharge. Laboratory studies suggest that the discharge which controls this slope, or dominant discharge, is that which is equalled or exceeded one quarter to one third of the time that flow occurs on the fan. In contrast, the dominant discharge in perennial alluvial rivers is equalled or exceeded only about 5 per cent of the time that flow occurs in the river. The dominant discharge on fans increases with increasing debris size, reflecting the importance of threshold stress. The slope of some natural and most laboratory alluvial fans is steepest on the flanks and gentlest along the axis. Consideration of the momentum of water debouching onto a fan at its apex suggests that the difference in slope between axis and flank should be greatest on steep fans composed of relatively non-cohesive materials because on such fans higher discharges tend to flow down the axis, whereas lower discharges can be turned to course down the flanks. On fans with gentle slopes or composed of more cohesive material the higher discharges can also be turned toward the flanks, so on such fans the difference in slope between the axis and flank is less pronounced. Field and laboratory observations support this interpretation. Because deposition at any one time on an alluvial fan is localized, some areas aggrade while others remain at a fixed elevation. This process is treated as a Markov process with the probability of diversion from an area of active deposition into an adjacent lower area increasing as the height of the active area above the mean or ‘ideal’ surface increases. Analysis of data from laboratory and natural fans suggests that the amplitude of such surface irregularities is greater on fans composed of coarser material. The data on natural fans also suggest an increase in amplitude of the irregularities with increasing fan area.  相似文献   

12.
Relationships between the surface area and age of alluvial deposits were used to estimate the residence time of alluvium in the 2205 km2 Waipaoa River basin, New Zealand. The contemporary Waipaoa River is an efficient transporter of sediment to the continental shelf, but the basin has been characterized by rapid channel and valley aggradation in the historic period, and by extensive mid‐ to late Holocene alluvial storage in the lower reaches. The area‐weighted mean age of alluvial deposits in the lower part of the river basin is ~4400 yr. These deposits comprise terrace remnants isolated by downcutting, and Holocene to Recent sediments that are potentially remobilizable by the modern river. Even though the amount of storage is small relative to downstream transport, the majority of the potentially remobilizable alluvium is likely to remain in storage for >100 yr, and its half‐life (time for 50 per cent removal) is >2000 yr. Within the confines of the flfloodplain, the apparent ‘loss’ of older deposits is due primarily to burial, but losses of the most recent deposits are due almost entirely to remobilization (30–40 per cent), with the remainder preserved in the alluvial record for at least 104 yr. Most of this sediment is likely to remain in storage until there is a shift to a degradational state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The alluvial cover in channels with non-alluvial beds is a major morphologic feature in these rivers and has important geomorphic and ecologic functions. Although controls on the extent of the alluvial cover have been previously researched, little is known about the role of channel meanders in shaping the three-dimensional morphology and bedload transport rates in these rivers. Flume experiments were conducted in a fixed-bed sinuous channel scaled from an engineered urban river. A fully graded sediment supply mixture was fed into the bare channel at rates ranging between 0.3 and 1.2 times the estimated channel capacity under constant discharge. The three-dimensional morphology and surface texture of the alluvial cover were captured using photogrammetry, and the sediment output was periodically measured and sieved. A stable alluvial cover was achieved under all sediment supply conditions that coincided with a sediment transport equilibrium. The sediment supply rate controlled the final areal extent, mass and volume of the alluvial cover, while cover developed as a periodic series of stable bars ‘fixed’ by the channel planform. The alluvial cover development followed consistent trajectories relative to angular position around bends but developed to a greater degree and higher elevation with increasing sediment supply. The stable cover extent had a logarithmic relationship with the relative sediment supply, while the final mass, volume and bar height had linear relationships. The final channel morphology was characterized by fine-textured point bars with flat tops and steep margins connected by coarse riffle features. The outside of banks between bend apexes remained bare, even at sediment supply conditions exceeding the channel capacity. The length of the exposed outer banks followed predictable linear relationships with the total cover extent. Insights from this study can provide guidance for the management of channels with non-alluvial boundaries and provide validation for models of sinuous bedrock channel abrasion. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Alluvial fans are dynamic landforms, the evolution of which is controlled by both external environmental forcing (climate, tectonics and base level change) and internal process‐form feedbacks. The latter include changes in flow configuration (between sheetflow and channelized flow states), driven by aggradation and degradation, which may in turn promote changes in sediment transport capacity. Recent numerical modelling indicates that such feedbacks may lead to dramatic and persistent fan entrenchment in the absence of external forcing. However, the parameterization of flow width within such models is untested to date and is subject to considerable uncertainty. This paper presents results from an experimental study of flow width dynamics on an aggrading fan in which spatial and temporal patterns of fan inundation are monitored continuously using analysis of digital vertical photography. Observed flow widths are compared with results from a simple theoretical model developed for non‐equilibrium (aggradational) conditions. Results demonstrate that the theoretical model is capable of capturing the first‐order characteristics of width adjustment over the course of the experiment, and indicate that flow width is a function of fan aggradation rate. This illustrates that models of alluvial flow width derived for equilibrium conditions may have limited utility in non‐equilibrium situations, despite their widespread use to date. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Changxing Shi 《水文研究》2016,30(2):232-244
Using hydrological and sediment data, this study investigated decadal trends in sediment erosion/deposition in the Inner Mongolia reach of the upper Yellow River. The calculated yearly sediment erosion/deposition show that the reach was dominated by aggradation, degradation, and aggradation successively in three periods with the years around 1961 and 1987 as break‐points. By constructing relations between water discharge and sediment load, the contributions of key factors to the changes in sediment erosion/deposition in the reach were quantified. Results show that the sediment retention behind the main stem dams, the increase of natural runoff, and the decrease of sediment inputs from tributaries and upstream watershed were the main factors causing the transition from aggradation during 1955–1961 to degradation during 1962–1987. The reduction of natural runoff, the decrease of sediment retention behind dams, and the rise of sediment supply from tributaries were the key causes of the reversal from degradation in 1962–1987 to aggradation in 1988–2003. Water diversion has played an important role in the long‐term aggradation of the Inner Mongolia reach. The main stem dams had functioned to alleviate siltation after 1961, but their effects on siltation reduction had been gradually diminishing since the 1990s. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Knowledge on spatio-temporal variations in planform, hydraulic geometry, and bed-level variations of alluvial streams is required for planning and development of hydraulic structures and bank protection works. In the current study, a Geographic Information System (GIS) has been used to analyze topographical maps, multi-temporal remotely sensed imagery, and hydrologic and hydraulic data to extract the morphological parameters of the Upper Tapi River, India. The river has been found to have consistent migration towards the northern direction, with erosion/deposition on right/left banks. The river has not experienced any major meander except in the lower reaches of the Upper Tapi Gorge and minor braiding conditions at the location where the river emerges from mountainous topography to the plain region. The analyzed river cross sections were found to be depth dominated, and contain large flows within the channel banks. The cross-sections exhibited moderate channel bed adjustments in 1994, 2006, and 2007 wherein excessive sediment flux and stream power were capable of causing morphological changes in the river. High intensity rainfall in the subcatchment resulted in high sediment flux into the river during 1994, which was reported to cause significant aggradation at the downgauging station. The analysis of sediment flux into the river in conjunction with decadal land use land cover, revealed that sediment yield from the catchment was reduced during 2000–2010 due to an increase in water bodies in the form of minor hydraulic structures. The entry of comparatively less sediment laden water into the river, resulted in moderate bed degradation especially in 2006 and 2007 as observed at the downstream station. The methodology applied in the current study is generic in nature and can be applied to other rivers to identify their morphological issues.  相似文献   

18.
A cellular model of Holocene upland river basin and alluvial fan evolution   总被引:1,自引:0,他引:1  
The CAESAR (Cellular Automaton Evolutionary Slope And River) model is used to simulate the Holocene development of a small upland catchment (4·2 km2) and the alluvial fan at its base. The model operates at a 3 m grid scale and simulates every flood over the last 9200 years, using a rainfall record reconstructed from peat bog wetness indices and land cover history derived from palynological sources. Model results show that the simulated catchment sediment discharge above the alluvial fan closely follows the climate signal, but with an increase in the amplitude of response after deforestation. The important effects of sediment storage and remobilization are shown, and findings suggest that soil creep rates may be an important control on long term (>1000 years) temperate catchment sediment yield. The simulated alluvial fan shows a complex and episodic behaviour, with frequent avulsions across the fan surface. However, there appears to be no clear link between fan response and climate or land use changes suggesting that Holocene alluvial fan dynamics may be the result of phases of sediment storage and remobilization, or instabilities and thresholds within the fan itself. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
1. INTROOUCnONFor a long time, the Lower Yellow River has been aggtading. As a result, the river bed becomesmuch higher than the adjacent land beyond the levees and poses a threat to the safety of the GreatNorthern Plain of China. Since the founding of the New China, great success has been achieved insafeguarding the levee for forty years. The trend of aggravation in lower reaches however is still Soingon and is at a rate even higher than before. That makes the flood control on the LO…  相似文献   

20.
Bo Wang  Yi-Jun Xu 《水文研究》2020,34(13):2864-2877
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号