首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large-scale air sparging/soil vapor extraction (AS/SVE) project constructed within coastal plain sediments in New Jersey has demonstrated substantial progress toward remediating ground water through removal of volatile organic compounds (VOCs). Potential concerns identified prior to project implementation regarding hydraulic mounding, reduction in hydraulic conductivity, development of air channels, and the absence of hydraulic containment were assessed and addressed through testing and operational features incorporated into the project. At the project site, AS/SVE has successfully reduced the presence of many VOCs to undetectable levels, while reducing the concentrations of the remaining VOCs by factors of two to 500. The physical agitation caused by air sparging, and incomplete transformation from sorbed and nonaqueous phases to the vapor phase, appears to temporarily increase VOC concentrations and/or mobility of dense nonaqueous phase liquids (DN APLs) within source areas at the project site, but this is addressed in terms of subsequent removal of VOCs by properly placed downgradient treatment lines and VOCs by properly placed downgradient treatment lines and DNAPL recovery wells. This case study identifies and evaluates project-specific features and provides empirical data for potential comparison to other candidates AS/SVE sites.  相似文献   

2.
Air sparging (AS) is a commonly applied method for treating groundwater contaminated with volatile organic compounds (VOCs). When using a constant injection of air (continuous mode), a decline in remediation efficiency is often observed, resulting from insufficient mixing of contaminants at the pore scale. It is well known that turning the injection on and off (pulsed mode) may lead to a better remediation performance. In this article, we investigate groundwater mixing and contaminant removal efficiency in different injection modes (i.e., continuous and pulsed), and compare them to those achieved in a third mode, which we denote as “rate changing.” In this mode, injection is always on, and its rate is varying with time by abrupt changes. For the purpose of this investigation, we conducted two separate sets of experiments in a laboratory tank. In the first set of experiments, we used dye plume tracing to characterize the mixing induced by AS. In the second set of experiments, we contaminated the tank with a VOC and compared the remediation efficiency between the different injection modes. As expected, we observed that time‐variable injection modes led to enhanced mixing and contaminant removal. The decrease in contaminant concentrations during the experiment was found to be double for the “rate changing” and “pulsed” modes compared to the continuous mode, with a slightly preferable performance for the “rate changing” mode. These results highlight the critical role that mixing plays in AS, and support the need for further investigation of the proposed “rate changing” injection mode.  相似文献   

3.
Air sparging has proven to be an effective remediation technique for treating saturated soils and ground water contaminated by volatile organic compounds (VOCs). Since little is known about the system variables and mass transfer mechanisms important to air sparging, several researchers have recently performed laboratory investigations to study such issues. This paper presents the results of column experiments performed to investigate the behavior of dense nonaqueous phase liquids (DNAPFs). specifically trichloroethylene (TCE), during air sparging. The specific objectives of the study were (1) to compare the removal of dissolved TCE with the removal of dissolved light nonaqueous phase liquids (LNAPLs). such as benzene or toluene; (2) to determine the effect of injected air-flow rate on dissolved TCE removal; (3) to determine the effect of initial dissolved TCE concentration on removal efficiency; and (4) to determine the differences in removal between dissolved and pure-phase TCE. The test results showed that (1) the removal of dissolved TCE was similar to that of dissolved LNAPL: (2) increased air-injection rates led to increased TCE removal at lower ranges of air injection, but further increases at higher ranges of air injection did not increase the rate of removal, indicating a threshold removal rate had been reached; (3) increased initial concentration of dissolved TCE resulted in similar rates of removal: and (4) the removal of pure-phase TCE was difficult using a low air-injection rate, but higher air-injection rates led to easier removal.  相似文献   

4.
The basic physics of air flow through saturated porous media are reviewed and implications arc drawn for the practical application of air sparging. A conceptual model of the detailed behavior of an air sparging system is constructed using elements of multiphase flow theory and the results of recent experimental work. Implications of the conceptual model on air sparging topics are discussed. The meaning of radius of influence in the context of air sparging is found to be ambiguous. The hydrodynamic effects of air sparging such as mounding of ground water and flow impedance are explored. Limitations on rates of remediation and operational strategics for improving sparging effectiveness are examined.  相似文献   

5.
Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was created, with a PCE pool accumulating on an aquitard. Detailed process control and analysis yielded accurate mass balances and insight into the mass-transfer limitations during air sparging. Initial PCE recovery rates were high, corresponding to fast removal of residual DNAPL within the zone influenced directly by air channels. The vadose zone DNAPL was removed within a few days, and the recovery in the extracted soil vapors decreased to low values. Increasing the sparge rate and pulsing the air injection led to improved mass recovery, as the pulsing induced water circulation and increased the DNAPL dissolution rate. Dissolved PCE concentrations both within and outside the zone of air channels were affected by the pulsing. Inside the sparge zone, aqueous concentrations decreased rapidly, matching the declining effluent PCE flux. Outside the sparge zone, PCE concentrations increased because highly contaminated water was pushed away from the air injection point. This overall circulation of water may lead to limited spreading of the contaminant, but accelerated the time-weighted average mass removal by 40% to 600%, depending on the aggressiveness of the pulsing. For field applications, pulsing with a daily or diurnal cycling time may increase the average mass removal rate, thus reducing the treatment time and saving in the order of 40% to 80% of the energy cost used to run the blowers. However, air sparging will always fail to remove DNAPL pools located below the sparge point because the air will rise upward from the top of a screen, unless very localized geological layers force the air to migrate horizontally. Unrecognized presence of DNAPL at chlorinated solvent sites residual and pools could potentially hamper success of air sparging cleanups, since the presence of small DNAPL pools, ganglia or droplets can greatly extend the treatment time.  相似文献   

6.
An Overview of In Situ Air Sparging   总被引:3,自引:0,他引:3  
In situ air sparging (IAS) is becoming a widely used technology for remediating sites contaminated by volatile organic materials such as petroleum hydrocarbons. Published data indicate that the injection of air into subsurface water saturated areas coupled with soil vapor extraction (SVE) can increase removal rates in comparison to SVE alone for cases where hydrocarbons are distributed within the water saturated zone. However, the technology is still in its infancy and has not been subject to adequate research, nor have adequate monitoring methods been employed or even developed. Consequently, most IAS applications are designed, operated, and monitored based upon the experience of the individual practitioner.
The use of in situ air sparging poses risks not generally associated with most practiced remedial technologies: air injection can enhance the undesirable off-site migration of vapors and ground water contamination plumes. Migration of previously immobile liquid hydrocarbons can also be induced. Thus, there is an added incentive to fully understand this technology prior to application.
This overview of the current state of the practice of air sparging is a review of available published literature, consultation with practitioners, a range of unpublished data reports, as well as theoretical considerations. Potential strengths and weaknesses of the technology are discussed and recommendations for future investigations are given.  相似文献   

7.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

8.
Innovative remediation studies were conducted between 1994 and 2004 at sites contaminated by nonaqueous phase liquids (NAPLs) at Hill and Dover AFB, and included technologies that mobilize, solubilize, and volatilize NAPL: air sparging (AS), surfactant flushing, cosolvent flooding, and flushing with a complexing-sugar solution. The experiments proved that aggressive remedial efforts tailored to the contaminant can remove more than 90% of the NAPL-phase contaminant mass. Site-characterization methods were tested as part of these field efforts, including partitioning tracer tests, biotracer tests, and mass-flux measurements. A significant reduction in the groundwater contaminant mass flux was achieved despite incomplete removal of the source. The effectiveness of soil, groundwater, and tracer based characterization methods may be site and technology specific. Employing multiple methods can improve characterization. The studies elucidated the importance of small-scale heterogeneities on remediation effectiveness, and fomented research on enhanced-delivery methods. Most contaminant removal occurs in hydraulically accessible zones, and complete removal is limited by contaminant mass stored in inaccessible zones. These studies illustrated the importance of understanding the fluid dynamics and interfacial behavior of injected fluids on remediation design and implementation. The importance of understanding the dynamics of NAPL-mixture dissolution and removal was highlighted. The results from these studies helped researchers better understand what processes and scales are most important to include in mathematical models used for design and data analysis. Finally, the work at these sites emphasized the importance and feasibility of recycling and reusing chemical agents, and enabled the implementation and success of follow-on full-scale efforts.  相似文献   

9.
A simple modification of the conventional air-stripping process introduced as cascade air stripping is proposed for efficient and economical removal of semivolatile and low volatility contaminants from ground water. The technical feasibility and economic viability of this process are evaluated using field test results and cost model simulations. The field tests enabled the process model to be verified at various water flow rates ranging from 150 gpm to 400 gpm. The field study also demonstrated the feasibility of the proposed system at a near full-scale level. Cost models were used to compare the proposed process to conventional air stripping and granular-activated carbon adsorption in removing a range of contaminants. This analysis showed that the treatment cost (ø/1000 gal) of cascade air stripping is about 15 percent lower than conventional air stripping and about 40 percent lower than granular-activated carbon adsorption.  相似文献   

10.
Micellar-enhanced ultrafiltration (MELT) and air stripping were evaluated for surfactant-contaminant separation and surfactant recovery. Two linear alkyl diphenyloxide disulfonate (DPDS) surfactants were evaluated with the contaminants naphthalene and trichloroethylene. A separation model developed from micellar partitioning principles showed a good correlation to batch MEUF studies, whereas flux analysis highlighted concentration polarization effects in relation to hydrophobe length. MEUF effectively concentrated the surfactant-contaminant system (93 to 99 percent retention); however, this did not result in surfactant-contaminant separation. Batch and continuous flow air stripping models were developed based upon air/water ratio, surfactant concentration, and Micellar partitioning; model predictions were validated by experimental data. Sensitivity analyses illustrated the decline in contaminant-surfactant separation with increasing surfactant concentration (e.g., TCE removal efficiency declines from 83 percent to 37 percent as C-16 DPDS concentration increases from 0 to 55 mM). This effect is greater for more hydrophobic contaminants (naphthalene vs. TCE) and surfactants with greater solubilization potential (C16-DPDS vs. C-12 DPDS). The resulting design equations can account for this effect and thus properly size air strippers to achieve the desired removal efficiency in the presence of surfactant micelles. Proper selection and design of surfactant-contaminant separation and surfactant recovery systems are integral to optimizing surfactant-enhanced subsurface remediation.  相似文献   

11.
Air sparging has been used for several years as an in situ technique for removing volatile compounds from contaminated ground water, but few studies have been completed to quantify the extent of remediation. To gain knowledge of the air flow and water behavior around air injection wells, laboratory tests and model simulations were completed at three injection flow rates (62, 187, and 283 lpm) in a cylindrical reactor (diameter - 1.2 m, depth = 0.65 m). Measurements of the air flux distribution were made across the surface of the reactor at 24 monitoring locations, six radial positions equally spaced along two orthogonal transects. Simulations using a multiphase flow model called T2VOC were completed for a homogeneous, axisymmetric configuration. Input parameters were independently measured soil properties. In all the experiments, about 75 percent of the flow injected exited the water table within 30 cm of the sparge well. Predictions with T2VOC showed the same. The averages of four flux measurements at a particular distance from the sparge well compare satisfactorily with T2VOC predictions. Measured flux values at a given radius varied by more than a factor of two, but the averages were consistent between experiments and agreed well with T2VOC simulations. The T2VOC prediction of the radial extent of sparging coincided with the distance out to which air flow from the sparge well could not be detected in the reactor. The sparging pattern was relatively unaffected by the air injection rate over the range of conditions studied. Changes in the injection rate resulted in nearly proportional changes in flux rates.  相似文献   

12.
In situ air sparging is used to remediate petroleum fuels and chlorinated solvents present as submerged contaminant source /ones and dissolved contaminant plumes, or to provide barriers to dissolved contaminant plume migration. Contaminant removal occurs through a combination of volatilization and aerobic biodegradation: thus, the performance at any given site depends on the contaminant and oxygen mass transfer rates induced by the air injection. It has been hypothesized that these rates are sensitive to changes in process flow conditions and site lithology, but no data is available to identify trends or the magnitude of the changes. In this work, oxygenation rates were measured for a range of air injection rates, ground water flow rates, and pulsing frequencies using a laboratory-scale two-dimensional physical model constructed to simulate a homogeneous hydrogeologic setting. Experiments were conducted with water having low chemical and biochemical oxygen demand. Results suggest the following: that there is an optimum air injection rate: advective How of ground water can be a significant factor when ground water velocities are > 0.3 m/d: and pulsing the air injection had little effect on the oxygenation rate relative lo the continuous air injection case.  相似文献   

13.
Air sparging is a relatively new technique for the remediation of ground water contaminated with petroleum hydrocarbons. In this technique, air is injected below the water table, beneath the contaminated soil. Remediation occurs by a combination of contaminant partitioning into the vapor phase and enhanced biodegradation. The air is usually removed by vacuum extraction in the vadose zone.
The efficiency of remediation from air sparging is a function of the air flow pattern, although the distribution of the injected air is still poorly understood. Cross-borehole resistivity surveys were performed at a former service station in Florence, Oregon, to address this unknown. The resistivity measurements were made using six wells, one of which was the sparge well. Data were collected over a two-week period during and after several air injections, or sparge events. Resistivity images were calculated between wells using an algorithm that assumes axially symmetric structures. The movement of the injected air through time was defined by regions of large increases in resistivity, greater than 100 percent from the background. During early sparge times, air moved outward and upward from the injection point as it ascended to the unsaturated zone. At later sparge times, the air flow reached a somewhat stable cone-shaped pattern radiating out and up from the injection point. Two days after sparging was discontinued, a residue of entrained air remained in the saturated zone, as indicated by a zone of 60 to 80 percent water saturation.  相似文献   

14.
15.
Laboratory Study of Air Sparging: Air Flow Visualization   总被引:15,自引:0,他引:15  
Laboratory flow visualization experiments, using glass beads as the porous medium, were conducted to study air sparging, an innovative technology for subsurface contaminant remediation. The purpose of these experiments was to observe how air flows through saturated porous media and to obtain a basic understanding of air plume formation and medium heterogeneity effects. The experiments indicate that air flow occurring in discrete, stable channels is the most probable flow behavior in medium to fine grained water saturated porous media and that medium heterogeneity plays an important role in the development of air channels. Several simulated scales of heterogeneities, from pore to field, have been studied. The results suggest that air channel formation is sensitive to the various scales of heterogeneities. Site-specific hydrogeologic settings have to be carefully reviewed before air sparging is applied to remediate sites contaminated by volatile organic compounds.  相似文献   

16.
A field screening method was developed for rapid measurement of benzene and gasoline range total petroleum hydrocarbons (TPHg) concentrations in groundwater. The method is based on collecting photoionization detector (PID) measurements from vapor samples. The vapor samples are collected by bubbling air through groundwater samples (air sparging) with a constant volume, temperature and sparging rate. The level of accuracy, sensitivity, precision, and statistical significance of the estimated concentrations, derived from the screening method, are comparable to conventional laboratory analytical results at concentrations equal to or greater than 150 µg/L for benzene and greater than 50 µg/L for TPHg. The method's concentration estimations can assist in making real‐time decisions regarding location of dissolved plumes and light nonaqueous phase liquid (LNAPL) source zones at many fuel release sites. The screening method was tested in the laboratory and in the field with 208 and 107 samples, respectively. The study concludes that the screening method can be used as a tool to aid in completing a site conceptual model as well as analyzing groundwater from monitoring wells.  相似文献   

17.
Soil air permeability plays a decisive role in the effectiveness of soil vapour extraction (SVE) for the removal of volatile organic contaminants (VOCs) from soil. The objective of this work is to study the change of the soil air permeability during continuous venting and removal of contaminant from a polluted soil. SVE pilot experiments were conducted to investigate the interaction of soil air permeability with total liquids saturation. Oppositely to previous studies, air permeability was measured by fitting pressure data measured in a 3D laboratory venting pilot to an analytical airflow solution. The experimental correlation was compared with two different correlations published previously. A difference was observed between measured and calculated air relative air permeabilities especially for low water saturation degrees. The importance of the correct estimate of relative permeability was then illustrated by comparing vacuums and streamlines calculated using measured permeability and permeability values estimated with the two correlations tested here. Results show that an inappropriate assessment of relative permeability may engender significant errors in designing an SVE system. The second part of this work reports on the influence of air permeability change on the prediction capability of an SVE mathematical model. A significant difference between simulated breakthrough curves, estimated using firstly the relationship established experimentally and secondly the two other correlations, was observed. These results lead us to say that inadequate characterization of the air permeability change may generate significant errors in removal rate and closure time estimates.  相似文献   

18.
More realistic soil cleanup standards with dual-equilibrium desorption   总被引:8,自引:0,他引:8  
Chen W  Kan AT  Newell CJ  Moore E  Tomson MB 《Ground water》2002,40(2):153-164
The desorption of contaminants from soils/sediments is one of the most important processes controlling contaminant transport and environmental risks. None of the currently adopted desorption models can accurately quantify desorption at relatively low concentrations; these models often overestimate the desorption and thus the risks of hydrophobic organic chemicals, such as benzene and chlorinated solvents. In reality, desorption is generally found to be biphasic, with two soil-phase compartments. A new dual-equilibrium desorption (DED) model has been developed to account for the biphasic desorption. This model has been tested using a wide range of laboratory and field data and has been used to explain key observations related to underground storage tank plumes. The DED model relates the amount of a chemical sorbed to the aqueous concentration, with simple parameters including octanol-water partition coefficient, solubility, and fractional organic carbon; thus, it is the only biphasic model, to date, that is based on readily available parameters. The DED model can be easily incorporated into standard risk and transport models. According to this model, many regulatory standards of soils and sediments could be increased without increasing the risks.  相似文献   

19.
The dissolution of gases, such as oxygen, in groundwater is a means to provide electron acceptors required for the biological degradation of organic contaminants in aquifers. The use of polymeric emitters for passive gas diffusion in groundwater significantly increases the efficiency of oxygen transfer to the groundwater compared to conventional sparging. A critical parameter for the design of polymeric emitters is the diffusion coefficient (D) of the polymer tubing used to construct the emitters. Wilson and Mackay (1995) proposed a mathematical model (WM model) for the analysis of laboratory passive diffusion experiments aimed at characterizing D. Their analytical solution is obtained in Laplace space and its inversion requires the use of a numerical approximation technique. This article proposes an alternative to the WM model by simplifying it as a dimensionless ordinary differential equation (ODE) which is solved using simple integration. The validity of the dimensionless solution is discussed and the latter plotted into charts to provide easy‐to‐use analytical tools applicable to gas or solute diffusion in groundwater.  相似文献   

20.
Strawberry Point, located on Hinchinbrook Island, Alaska, is the site of a Federal Aviation Administration air navigation facility that is contaminated with gasoline- and diesel-range hydrocarbons in soil and ground water. An air sparging system was installed to promote bioremediation in the zone of seasonal ground water fluctuation where the contaminant is concentrated. The sparge wells were placed in a homogeneous formation, consisting of fine-grain beach and eolian sands. The system was then evaluated to determine the ground water region of influence and optimum frequency of operation. Neutron probe borehole measurements of percentage; of fluid displacement during sparging at two wells revealed dynamic air distributions defined by an initial and relatively rapid expansion phase followed by a consolidation phase. Air distribution was stable within 12 hours after startup, reaching a peak air saturation of greater than 50 percent. The radius of peak expansion varied with time and depth, with measurable fluid displacement occurring beyond 12 feel from the sparge well near the water table. The percentage of air saturation stabilized within one hour following cutoff of the air flow, leaving pockets of entrapped air near the water table. When air injection was resumed, air saturation levels were found to be repeatable. The observations at this site indicated that the effective region of influence is relatively small and that frequent pulsing is needed to optimize oxygen distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号