首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
    
The present paper discusses the implementation of the SGHR method (Sakurai, Goossens, and Hollweg, 1991; Goossens, Ruderman, and Hollweg, 1995) in a numerical scheme for determining resonantly driven Alfvén waves in nonuniform magnetic flux tubes. This method is based on jump conditions over the dissipative layer which are obtained from an asymptotic analysis of analytical solutions to simplified versions of the linear non-ideal MHD equations in this dissipative layer. The emphasis is on the computational simplicity and the accuracy of the method. The method derives its computational simplicity from the fact that it circumvents the numerical integration of the non-ideal MHD equations. The implementation only requires the numerical integration of the ideal MHD equations away from the resonant position. There is no need for a special integration scheme and a PC suffices as a hardware tool.The accuracy of the method is verified by means of test computations. These test computations deal with the loss of power of acoustic waves in sunspots by resonant absorption of Alfvén waves. Results for the absorption coefficients obtained with the SGHR method are compared with known results in the literature obtained by integration of the full set of the linearized non-ideal MHD equations. The agreement is excellent and identifies the SGHR method as a powerful and extremely easy to use tool for studying resonant Alfvén waves.  相似文献   

2.
ERDÉLYI  RÓBERT 《Solar physics》1997,171(1):49-59
The present paper considers resonant slow waves in 1D non-uniform magnetic flux tubes in dissipative MHD. Analytical solutions are obtained for the Lagrangian displacement and the Eulerian perturbation of the total pressure for both static and stationary equilibrium states. From these analytical solutions we obtain the fundamental conservation law and the jump conditions for resonant slow waves in dissipative MHD. The validity of the ideal conservation law and jump conditions obtained by Sakurai, Goossens, and Hollweg (1991) for static equilibria and Goossens, Hollweg, and Sakurai (1992) for stationary equilibria is justified in dissipative MHD.  相似文献   

3.
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfvén waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfvén waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for r , andP across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for r , andP in terms of double integrals of Hankel functions of complex argument of order with compact analytical solutions that allow a straightforward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpendicular to the magnetic field lines which enables us to determine the dominant dynamics of resonant Alfvén waves in dissipative MHD.  相似文献   

4.
Erdélyi  Róbert 《Solar physics》1998,180(1-2):213-229
The effect of equilibrium flow on linear Alfvén resonances in coronal loops is studied in the compressible viscous MHD model. By means of a finite element code, the full set of linearised driven MHD equations are solved for a one-dimensional equilibrium model in which the equilibrium quantities depend only on the radial coordinate. Computations of resonant absorption of Alfvén waves for two classes of coronal loop models show that the efficiency of the process of resonant absorption strongly depends on both the equilibrium parameters and the characteristics of the resonant wave. We find that a steady equilibrium shear flow can also significantly influence the resonant absorption of Alfvén waves in coronal magnetic flux tubes. The presence of an equilibrium flow may therefore be important for resonant Alfvén waves and coronal heating. A parametric analysis also shows that the resonant absorption can be strongly enhanced by the equilibrium flow, even up to total dissipation of the incoming wave.  相似文献   

5.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

6.
The nonlinear propagation of Alfvén waves on open solar magnetic flux tubes is considered. The flux tubes are taken to be vertical and axisymmetric, and they are initially untwisted. The Alfvén waves are time-dependent axisymmetric twists. Their propagation into the chromosphere and corona is investigated by solving numerically a set of nonlinear time-dependent equations, which couple the Alfvén waves into motions parallel to the initial magnetic field (motion in the third coordinate direction is artificially suppressed). The principal conclusions are: (1) Alfvén waves can steepen into fast shocks in the chromosphere. These shocks can pass through the transition region into the corona, and heat the corona. (2) As the fast shocks pass through the transition region, they produce large-velocity pulses in the direction transverse to B o. The pulses typically have amplitudes of 60 km s–1 or so and durations of a few tens of seconds. Such features may have been observed, suggesting that the corona is in fact heated by fast shocks. (3) Alfvén waves exhibit a strong tendency to drive upward flows, with many of the properties of spicules. Spicules, and the observed corrugated nature of the transition region, may therefore be by-products of magnetic heating of the corona. (4) It is qualitatively suggested that Alfvén waves may heat the upper chromosphere indirectly by exerting time-dependent forces on the plasma, rather than by directly depositing heat into the plasma.  相似文献   

7.
The resonances that appear in the linear compressible MHD formulation of waves are studied for equilibrium states with flow. The conservation laws and the jump conditions across the resonance point are determined for 1D cylindrical plasmas. For equilibrium states with straight magnetic field lines and flow along the field lines the conserved quantity is the Eulerian perturbation of total pressure. Curvature of the magnetic field lines and/or velocity field lines leads to more complicated conservation laws. Rewritten in terms of the displacement components in the magnetic surfaces parallel and perpendicular to the magnetic field lines, the conservation laws simply state that the waves are dominated by the parallel motions for the modified slow resonance and by the perpendicular motions for the modified Alfvén resonance.The conservation laws and the jump conditions are then used for studying surface waves in cylindrical plasmas. These waves are characterized by resonances and have complex eigenfrequencies when the classic true discontinuity is replaced by a nonuniform layer. A thin non-uniform layer is considered here in an attempt to obtain analytical results. An important result related to earlier work by Hollweg et al. (1990) for incompressible planar plasmas is found for equilibrium states with straight magnetic field lines and straight velocity field lines. For these equilibrium states the incompressible and compressible surface waves have the same frequencies at least in the long wavelength limit and there is an exact correspondence with the planar case. As a consequence, the conclusions formulated by Hollweg et al. still hold for the straight cylindrical case. The effects of curvature are subsequently considered.  相似文献   

8.
Discrete Alfvén waves in coronal loops and prominences are investigated in non-ideal magnetohydrodynamics. The non-ideal effects included are anisotropic, thermal conduction, and optically thin radiation. The classic ideal Alfvén continuum is not altered by these non-ideal effects, but the discrete Alfvén modes, which exist under certain conditions above or below the Alfvén continuum in ideal MHD, are shown to be influenced by non-adiabatic effects.The existence of discrete, non-adiabatic Alfvén waves, and their damping and overstability are examined for 1D cylindrical equilibrium states with twisted magnetic fields. First, analytic results are obtained for modes of high radial order by means of a WKB-analysis. The subspectrum of discrete Alfvén modes is computed with a numerical code, with particular emphasis on the modes of low radial order. The results show that discrete Alfvén waves are of potential importance for solar applications and also that the information obtained with the WKB-analysis is of limited use in this context.Research Assistant of the Belgian National for Scientific Research.  相似文献   

9.
The reflection coefficient for sound or Alfvén waves reaching the transition zone is evaluated. A family of temperature profiles, including T 5/2 dT/dz = constant, permits analytical solutions for the velocity and yields the reflection coefficient as a function of both the wavelength and the temperature jump across the zone. When the temperature jump is large, even waves appreciably shorter than the zone thickness are reflected efficiently.Wave reflection disorders the waves in and below the transition zone, because rising waves there interact with reflected waves in a manner more similar to turbulence than to shock steepening.The distribution in directions of hydromagnetic waves is determined by the non-uniformity of their sources. Most inhomogeneities in the wave source cause the waves to resemble isotropic fastmode waves more than Alfvén waves. This places severe restrictions on possible sources of Alfvén waves.  相似文献   

10.
The solar atmosphere is heated by a flux of mechanical waves propagating in one or more of the modes: acoustic, Alfvén and gravitational.The acoustic theory is compared with observational data and found inadequate. First, the theory is based quantitatively on the Böhm-Vitense convection zone model, and large-scale convective motions (supergranulation) and magnetic fields (unipolar regions) show that convection has another form. On the other hand, when granular motions are invoked the energy flux is too small. Second, atmospheric heating is localized in faculae, and enhanced acoustic flux beneath these regions is no longer explicable. Finally, the short periods of 10–30 s invoked recently appear inexplicable. Objections to the gravitational wave heating process are given briefly.Previous objections to Alfvén waves as an energy source followed from the belief that fields were generally uniform and of strength 50 G, now known to be incorrect. Models of Alfvén wave generation are based on (i) granule eddy motions, (ii) overstable oscillations in subsurface flux tubes and sunspot flux ropes, and (iii) supergranule motions, both horizontal and vertical.The first provides waves which propagate along thin flux tubes oscillating as taut wires in a compressible fluid; they may explain mottles, fibrils and other small emission features. The second may explain the enormous dissipation in spot groups, including flares. The third has been invoked earlier to explain spicules, and may have effects in the solar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号