首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated.Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.  相似文献   

2.
The suspended particulate organic matter, SPOM, in the autumnal Black Sea has been characterised using catalytic hydropyrolysis (HyPy) of the total (bound plus free) lipid material. The technique, which generates maximum yields of volatile products from sediments, kerogens and phytoplankton, was followed using gas chromatography and gas chromatography/mass spectrometry. The generated alkanes were dominated by n-C18, hypothesised to arise predominantly from unsaturated C18 fatty acids. Steranes were generated from reductive conversion of free and bound sterols. The generation of branched alkanes and especially of hopanes provided formal evidence for the participation of bacteria in the mineralisation of the SPOM. Whereas similar distributions of n-alkanes were generated from SPOM sampled from different depths of the comparatively well-stirred Rhodes Gyre (eastern Mediterranean), mineralisation of the SPOM at each depth of the central Black Sea produced characteristic changes in the composition and concentration of the HyPy products. Depth profiles of the n-alkanes generated from SPOM in the region of the Rim Current were affected by the local hydrography. Polynuclear aromatic hydrocarbons (PAHs) of anthropogenic origin were present in the surface waters of the central Black Sea. Some methyl benzenes, thiophenes and pyrroles were also generated.  相似文献   

3.
The surface sediments collected from the southern Mariana Trench at water depths between ca. 4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture (UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C27–C29 regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent. This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios (ranging from 0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio (10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C19–C22 and the n-fatty acids C20:0–C22:0 were depleted in 13C by 3‰ compared to n-alkanes C16–C18 and the n-fatty acids C14:0–C18:0, respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon “lighter” terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment.  相似文献   

4.
Molecular stratigraphic analyses using gas chromatograph-mass spectrometry have been performed in the upper section (S0, L1, S1) of the Yuanbo loess-paleosol sequences in northwest China, with a record extending from the last interglaciation through the present interglaciation. The CPI (Carbon Preference Index) values of both n-alkanols and n-alkan-2-ones display variations between loess deposits and paleosols, showing a correlation with the magnetic susceptibility record, an indicator of the East Asian summer monsoon. The observed variations in the indexes in relation to changes in lithology/paleoclimate are proposed to result from microbial degradation of higher plant lipids in the paleosols. The CPI values of n-alkanes, n-alkanols, and n-alkan-2-ones are negatively correlated with δ13C of bulk organic matter. The correlations suggest that the observed glacial-interglacial variations of δ13C data in the loess stratigraphy reflect the relative importance of the contribution of paleovegetation compared with microorganisms (including both the degradation and the addition of organic matter) and allochthonous loess/soil parent materials. It is thus necessary to evaluate the contributions of the latter two before the paleovegetation can be reconstructed based on the δ13C analysis of bulk organic matter in some loess-paleosol sequences of the Chinese Loess Plateau.  相似文献   

5.
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the δ13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their δ13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.  相似文献   

6.
Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5–116 hr) and temperatures (150°–410°C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid <1%. Whereas n-alkanes produced from lipid show a CPI > 1.0, those produced by thermal alteration of kerogen display a CPI < 1.0. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2–C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.  相似文献   

7.
Monocyclic alkanes in Ordovician organic matter   总被引:1,自引:0,他引:1  
The major compounds in the C15+ branched/cyclic alkane fractions of two Ordovician oils (Pine Unit and Midland Farms oils) and an immature Ordovician rock (Guttenberg Oil Rock) are monocyclics. One series of these compounds was identified as n-alkylcyclohexanes and another tentatively identified as methyl-n-alkylcyclohexanes. The carbon number distribution of these compounds resembled those of the n-alkanes found in these samples with an odd carbon number predominance. It is suggested that the monocyclic alkanes, in these Ordovician samples, may be principally derived from the cyclisation of straight-chain algal fatty acids, by mechanisms that involve decarboxylation. However, there is evidence from the m/z 97 fragmentograms of these samples, to indicate that methyl-n-alkylcyclohexanes can also be derived from fatty acids by a less preferred mechanism that does not involve decarboxylation or from other precursors.In addition, a sample of kerogen from the Guttenberg Oil Rock was hydrously pyrolysed. The saturated hydrocarbon products of this experiment showed very similar distributions (including monocyclics) to those observed in the Ordovician oils. This suggests that although the oils and the Guttenberg Oil Rock come from widely differing geographical locations, their precursor (algal derived) organic matter was very similar.  相似文献   

8.
Alkane hydrocarbon and n-fatty acid distributions have been examined in cores taken over a 550 ft thickness through the lower Jurassic, largely non-marine Evergreen Shale, Surat Basin, Queensland, Australia. No depth trends in compound abundances or carbon preference indices are discernible. There is no evidence for significant generation of n-alkanes from kerogen nor for cracking of long-chain n-alkanes. The present distribution patterns of the biochemicals probably reflect closely the nature of the original organic matter. The general strong dominance of long-chain (C20+) n-alkanes; the lack of evidence for diagenetic change; and the absence of correlation between abundances of n-alkanes and n-fatty acids (among both the longer- and shorter-chain compounds), lead to the conclusion that at least the long-chain n-alkanes were largely deposited as such in the sediment, having originated in land-plant material, remains of which are abundant in the samples. In the upper 170 ft. (possibly marine), n-alkanes with chain lengths below C20 become important, suggesting greater significance of aquatic life as a source of organic matter at the time of deposition, a conclusion which is in general accord with the geological history of the basin, although this history is not well known.  相似文献   

9.
We characterized the compositions of organic compounds in a Cheremushka bog sediment core (deposited over the last 35 kyr), located at the eastern coast of Lake Baikal, to obtain basic information about the terrestrial organic matter (OM) which contributed to Lake Baikal sediments. The bog sediment was analyzed for the molecular composition of n-alkanes, lignin phenols and n-C24 to C30 alkanoic acids, as well as the carbon isotopic composition of plant wax derived n-C27 to C33 alkanes.Concentrations of lignin phenols [vanillyl (V) plus syringyl (S) phenols] normalized to total organic carbon (TOC) in the Holocene are twice those for the last glacial maximum (LGM), while concentrations of TOC-normalized n-C24 to C30 alkanoic acids do not change markedly in this period. Thus, the ratio of lignin phenols to n-C24 to C30 alkanoic acids increases from the LGM to the Holocene. This result is essentially consistent with pollen analysis indicating an expansion of woody plants in the Holocene and a prevailing herb-abundant environment for the LGM. The δ13C values of n-C27 to C33 alkanes (e.g. ?29‰ to ?33‰ for C31) indicate the presence of C3-dominant plants throughout the core.The contribution of terrestrial OM to Lake Baikal sediments was estimated using the biomarkers, on the assumption that the OM in the bog sediments is a representative of the terrestrial OM around the lake. Hence, the estimation using lignin phenol or n-C24 to C30 alkanoic acid parameters indicates that 11–24% of the TOC in the Academician Ridge sediments is land-derived for both the Holocene and the LGM, which is similar to the estimates from C/N values of bulk OM. However, the estimates for terrestrial OM using the n-C27 to C33 alkane parameter are generally higher than those using lignin phenol or n-C24 to C30 alkanoic acid parameters. The difference is thought to be associated with the difference in source and behavior of these biomarkers.  相似文献   

10.
Peats in a sediment core from Ruoergai bog, which has a cold and moist plateau climate with major source input from herbaceous plants, have been studied by GC–MS in order to understand the composition and diagenetic processes of lipids in this depositional environment. Long chain components (C21–C35) predominate in the n-alkanes, n-alk-1-enes, n-fatty acids, n-alkan-2-ones and n-alkanols with a maximum of C31, C27, C22 or C24, C23 or C25 and C22, respectively. A herbaceous origin for these long chain compounds is suggested, and this is supported by their stable carbon isotopic compositions. Diterpenoid hydrocarbons with abietane, pimarane and kaurane skeletons, some of which have not been reported often in modern sediments, are prominent and are derived from higher plants. Several triterpenoid ketones and alcohols with oleanane or lupane skeletons, and a series of des-A-triterpenoid hydrocarbons which have not been reported often in modern sediments are also present, and are assigned to a higher plant source. Hopanoids, including their alkanes, alkenes, ketones, alcohols and esters, are abundant and of bacterial origin. Steroid ketones and alkanols are dominated by C29 homologues. C28 and C29 steroids are derived mainly from higher plants, whereas the C27 component is assigned to a microbial source. The presence of short-chain n-alkanes with no odd-even carbon predominance, bacterially derived fatty acids (C14, C15, iso- and unsaturated acids), n-alkan-2-ones, des-A-triterpenoid hydrocarbons, hopanoids and some steroid ketones indicate that intense microbial reworking of the organic matter has taken place in this depositional environment. The chemical and biochemical conversions of some cyclic alkenes to alkanes, such as tricyclic diterpenoids, tetracyclic terpenoids and steroid ketones, are also evident with depth. The dominance of C20 components in the diterpenoid hydrocarbons may reflect an oxidizing or reducing depositional condition.  相似文献   

11.
The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with maximum at C18(or C19) and n-C27 –n-C31 as well as at C29(or C31). The short-chain alkanes suffered from significant losses due to their slow deposition in the water column, and their presence with a slight even carbon predominance in shallow seafloor sediments was ascribed mainly to the direct input from the benthos. The long-chain alkanes with odd predominance indicate transportion of terrigenous organic matter. Immature hopanoid biomarkers reflect the intense microbial activity for bacteria–derived organic matter and the gradual increase of maturity with burial depth. Abundant n-fatty acid methyl esters(n-FAMEs) that are in distributions coincident with fatty acids were detected in all samples. We proposed that the observed FAMEs originated from the methyl esterification of fatty acids; methanol production by methanotrophs and methanogenic archaea related to the anaerobic oxidation of methane, and sulfate reduction provided an O–methyl donor for methylation of fatty acids. The CH4 released from hydrate dissociation at oxygen isotope stage II of Cores ZD3 and ZS5, which had been confirmed by the occurrence of negative δ13C excursion and spherical pyrite aggregates, could have accelerated the above process and thus maximized the relative content of FAMEs at ZD3-2(400–420 cm depth) and ZS5-2(241–291 cm depth).  相似文献   

12.
A mechanistic model consisting of 13,206 lumped free radical reactions has been developed to describe the thermal evolution of a mixture of 78 alkanes: all n-alkanes from C1 to C32 and 46 branched alkane model compounds from C4 to C32. The mixture was meant to represent the major part of the saturated fraction of petroleum. The rate constants used are available from the literature. The lumping together procedure is described and the model validated on the basis of several experimental results from the literature and relating to pure alkanes. The model is also compared to the saturated fraction obtained from pyrolysis of Elgin oil at 372 °C for up to 1000 h. The cracking global activation energy of n-C15 as well as iso-C15 is close to 69 kcal/mol in the range 200-350 °C. The implications of the model for geological reservoirs will be discussed in a following paper.  相似文献   

13.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

14.
The current geochemical study of n-alkanes, steranes, and triterpanes in bitumen from the Late Maastrichtian–Paleocene El Haria organic-rich facies in West of Gafsa, southern Tunisia, was performed in order to characterize with accuracy their geochemical pattern. The type of organic matter as deduced from n-alkanes, steranes, and triterpanes distributions is type II/III mixed oil/gas prone organic matter. Isoprenoids and biomarkers maturity parameters (i.e., T s/T m, 22S/(22S?+?22R) of the C31 αβ-hopanes ratios, 20S/(20R?+?20S) and ββ/(ββ?+?αα) of C29 steranes), revel that the organic-rich facies were deposited during enhanced anoxic conditions in southern Tunisa. The organic matter is placed prior to the peak stage of the conventional oil window (end of diagenesis–beginning of catagenesis). All these result are suggested by total organic carbon analysis, bitumen extraction and liquid chromatography data. Thus, the n-alkanes, triterpane, and steranes study remains valuable and practical for geochemical characterization of sedimentary organic matter.  相似文献   

15.
A sample of the sediment-water column interface which lies on the continental shelf under the Peru upwelling regime, has been examined for fatty acids, fatty alcohols, ketones and hydrocarbons. Fatty acids were the most abundant compound class, ranging from C12-C24, with 16:0 as the major component (765.5 μg/g dry sediment). The alcohols were dominated by 3,7,11,15-tetramethylhexadeca-2-en-ol (phytol), with even-chain n-alcohols in the range C14-C20. The ketones consisted of C37-C39 di- and tri-unsaturated alken-2-ones and alken-3-ones. Both alkanes and alkenes were present in the hydrocarbon fraction; the alkanes ranging from C13 — C20 and comprising both straight chain and isoprenoid compounds; the alkenes consisting of isomeric pairs of C25 branched trienes and tetraenes. The data indicate that the organic content has been contributed very largely from marine sources (probably mainly from phytoplankton and bacteria), showing little terrigenous influence. The presence of labile compounds such as polyunsaturated fatty acids (with two to six double bonds), implies that the sediment has undergone very little diagenetic alteration, and the lipids are probably largely unchanged from the state in which they actually reached the sediment. They may therefore serve as a useful baseline in assessing diagenesis in older sediments, where diagenetic transformations are more advanced.  相似文献   

16.
Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200–400°C, 2–1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300°C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.  相似文献   

17.
In this study, the molecular composition and biomarker distribution of lacustrine sediments from Val-1 drillhole in the central zone of the western part of the Valjevo-Mionica basin were investigated at depth interval of 0–400 m. Former investigations have shown that the core material can be separated into six depth intervals based on bulk geochemical, mineralogical and sedimentological characteristics. Concerning the quality of organic matter, presence of specific minerals, and high salinity and anoxicity, or alkalinity, three zones are of highest interest, defined at depth intervals of 15–75 m (A), 75–200 m (B) and 360–400 m (F). The first aim of the study was to identify which biomarkers characterize these specific intervals. The second aim, addressing the transitions zones of these intervals, was to extend the changes in the characteristics of the organic substance, to reflect the changes of conditions in the depositional environment as well as to define biomarker parameters which are the most sensitive sedimentological indicators.The sediments from the hypersaline anoxic and alkaline environment show high contribution of algal precursor biomass, what is in accordance with the good quality of organic substances in the sediments from these zones. High squalane content and low content of regular isoprenoid C25 are typical for hypersaline anoxic environment, whereas sediments from alkaline environment have high regular isoprenoid C25 content.Transition to specific sedimentation zones is characterized by change in total organic matter content, and of both free and pyrolysis-derived, and change in hydrogen index value. In the biomarker distributions, more significant changes were detected in distributions of n-alkanes and isoprenoids, compared to polycyclic alkanes. The most intensive changes in alkane distribution are reflected in changes in n-C17 content compared to n-C27, and phytane compared to n-C18. In addition, significant sensitivity was seen in ratios between squalane and n-alkane C26 (hypersaline depositional environment), or isoprenoid C25 and n-alkane C22 for high alkalinity environment.This study showed that Sq/n-C26 ratio can be used to assess the quality of organic substance in immature lacustrine sediments.  相似文献   

18.
This study investigates the extent of post-depositional alteration of δD values of n-alkyl lipids, isoprenoids, and kerogen isolated from a continuous 450 m core that covers the transition from thermally immature to early mature sediments in the lacustrine Kissenda Formation, Lower Cretaceous, Gabon Basin. Large variations in δD values (up to 40‰ for nC17 and up to 30‰ for nC29 alkanes as well as up to 10‰ for kerogen) in closely spaced samples are evident throughout the core and remain preserved even at the bottom of the section. δD values of individual n-alkanes show a slight overall D-enrichment with depth, and a general trend of increasing δD values with increasing n-alkane chain length characterizes all samples, particularly in those below 600 m depth. Hydrogen isotopic compositions of kerogen samples overlap with those of n-alkanes throughout the section. δD values of pristane and phytane are more negative than those of nC17 alkane by as much as 120‰ at shallow depths but increase dramatically and approach δD values of nC17 alkane in the samples closest to the oil window. Integration of analytical and computational results indicates that: (1) n-alkanes and isoprenoids have the potential to preserve the original biological signal before the onset of oil generation; (2) isomeric and structural rearrangements taking place at the beginning stages of oil generation do not influence significantly the δD values of n-alkanes and kerogen. However, these processes have a major effect on the isotopic composition of isoprenoids, causing isotopic D-enrichment up to 90‰.  相似文献   

19.
Various aquatic plants from Lake Qinghai, the largest inland saline lake in China, and terrestrial plants from the surrounding area were investigated for the distribution of n-alkanes and their δD values. The n-alkanes in the samples range from C15 to C33 with C preference index (CPI) values of 4.0–29.7. The n-C23 or n-C25 alkane is the dominant compound in the aquatic submerged plants. The aquatic emergent and terrestrial plants have an abundance maximum at n-C27, n-C29 or n-C31. The average chain length (ACL) values, ranging from 26.0 to 29.6, are closely related to the plant species. The n-alkanes from the aquatic plants have mean δD values of −169‰ to −121‰ and those from the terrestrial plants values of −173‰ to −109‰. The H isotopic composition (δD) and fractionation differ significantly among the plants studied. Comparison shows that additional evaporative enrichment of the lake water associated with saline lakes and humidity influence the δD values of the n-alkanes in aquatic and terrestrial plants, respectively. The mean δD values of n-alkanes in the plants decrease with increasing ACL value. The n-alkanes from the different types of plants are more depleted in D relative to environmental water and those from aquatic plants (with a mean value of −143‰) have a greater isotopic fractionation than terrestrial plants (mean value −113‰).  相似文献   

20.
《Applied Geochemistry》2003,18(10):1641-1651
Compound-specific H isotope analysis has been used to monitor bioremediation of petroleum hydrocarbons. However, the success of this approach requires a full evaluation of the isotopic effects resulting from evaporation, because light petroleum hydrocarbons undergo both biodegradation and evaporation under natural conditions. The authors determined the H isotope fractionation of common volatile petroleum hydrocarbons, including the C10–C14 n-alkanes, MTBE (tert-butyl methyl ether), and BTEX (benzene, toluene, ethylbenzene, p-xylene and o-xylene) during progressive vaporization under simulated experimental conditions. A decrease in δD values for n-alkanes of up to 33.3‰ and up to 44.5‰ for BTEX compounds when 99% of these substances had evaporated was observed. The results also show that H isotope fractionation increases with n-alkane chain length. Such fractionation patterns are interpreted in terms of competition between the decreased intermolecular binding energy in D-enriched species, and the isotope effect due to the mass difference. In contrast to hydrocarbons, methanol and ethanol show H isotopic enrichment during vaporization, indicating that H-bonding, when present in organic molecules, plays a controlling role on the vapor pressure of different isotope species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号