首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Phase relations of pumpellyite, epidote, lawsonite, CaCO3, paragonite, actinolite, crossite and iron oxide are analysed on an Al-Ca-Fe3+ diagram in which all minerals are projected from quartz, albite or Jadeite, chlorite and fluid. Fe2+ and Mg are treated as a single component because variation in Fe2+/Mg has little effect on the stability of phases on the diagram. Comparison of assemblages in the Franciscan, Shuksan, Sanbagawa, New Caledonia, Southern Italian, and Otago metamorphic terranes reveals several reactions, useful for construction of a petrogenetic grid:
  1. lawsonite+crossite + paragonite = epidote+chlorite + albite + quartz + H2O
  2. lawsonite + crossite = pumpellyite + epidote + chlorite + albite+ quartz + H2O
  3. crossite + pumpellyite + quartz = epidote + actinolite + albite + chlorite + H2O
  4. crossite + epidote + quartz = actinolite + hematite + albite + chlorite + H2O
  5. calcite + epidote + chlorite + quartz = pumpellyite + actinolite + H2O + CO2
  6. pumpellyite + chlorite + quartz = epidote + actinolite + H2O
  相似文献   

2.
A new petrogenetic grid for low-grade metabasites   总被引:7,自引:0,他引:7  
Abstract We have used internally-consistent thermodynamic data to present calculated phase equilibria for the system Na2O-CaO-MgO-Al2O3-SiO2-H2O (NCMASH), in the range 0–500° C and 0.1–10 kbar, involving the phases anorthite, glaucophane, grossular, heulandite, jadeite, laumontite, lawsonite, paragonite, prehnite, pumpellyite, stilbite, tremolite, wairakite, zoisite with excess albite, clinochlore, quartz and pure water. Average activity terms derived from published mineral chemical data were included for clinochlore, glaucophane, prehnite, pumpellyite, tremolite, and zoisite. The new petrogenetic grid delineates stability fields and parageneses of common index minerals in zeolite, prehniteactinolite, prehnite-pumpellyite, pumpellyite-actinolite, blueschist and greenschist facies metabasites. The stability fields of mineral assemblages containing prehnite, pumpellyite, epidote, actinolite (+ albite + chlorite + quartz) were analysed in some detail, using activity data calculated from five specific samples. For example, the prehnite-actinolite facies covers a P-T field ranging from about 220 to 320° C at pressures below 4.5 kbar. The transition from the prehnite-actinolite and pumpellyite-actinolite to greenschist facies occurs at about 250–300° C at 1–3 kbar and at about 250–350° C at 3–8 kbar. P-T fields of individual facies overlap considerably due to variations in chemical composition.  相似文献   

3.
Summary In the Cazadero area, northern California, Lawsonite-bearing eclogitic metabasites occur in association with glaucophane schists. Lawsonite-bearing eclogitic metabasites are coarse-grained, and characteristically lack albite. Representative mineral assemblages are; (1) garnet + omphacite + Lawsonite + epidote + glaucophane + chlorite + quartz, (2) garnet -F- omphacite + Lawsonite + pumpellyite + glaucophane + actinolite + quartz, (3) garnet + omphacite + Lawsonite + pumpellyite + epidote + glaucophane + quartz. They can be represented on an A12O3-Fe2O3-MgO-Na2O diagram in which all minerals are projected from quartz, Lawsonite, almandine garnet, and H2O-predominant fluid. On the basis of the garnet-clinopyroxene geothermometry and phase relations, the metamorphic conditions for the formation of Lawsonite-bearing eclogitic metabasites are estimated at 360-445 °C and more than 9 ± 1 kbar. Lawsonite-bearing eclogitic metabasites formed near the univariant curve albite = jadeite +quartz. A petrogenetic grid constructed by Schreinemakers' method shows that the Lawsonite-bearing eclogitic metabasites in the Cazadero area formed under transitional P-T conditions between those of the garnet-bearing glaucophane schists in New Caledonia and lawsonitebearing eclogitic metabasites in Corsica.Zusammenfassung Im Gebiet um Cazadero, Nordkalifornien, kommen Lawsonit-führende eklogitische Metabasite in Assoziation mit Glaukophanschiefern vor. Den grobkörnigen Lawsonitführenden Metabasiten fehlt charakteristischerweise Albit. Repräsentative Mineralparagenesen sind: (1) Granat + Omphacit + Lawsonit + Epidot + Glaukophan + Chlorit + Quarz, (2) Granat + Omphacit + Lawsonit + Pumpellyit + Glaukophan + Aktinolith + Quarz, (3) Granat + Omphacit +Lawsonit + Pumpellyit + Epidot + Glaukophan + Quarz. Sie lassen sich in einem A12O3-Fe2O3-MgO-Na2O Diagramm, in dem alle Minerale von Quarz, Lawsonit, Almandin-reichem Granat und einem H2O-dominierten Fluid projiziert werden, darstellen. Die Metamorphosebedingungen der Lawsonitführenden eklogitischen Metabasite werden auf Grund von Granat-Klinopyroxenthermometrie und der Phasenbeziehungen mit 360-445°C und mehr als 9 ± 1 kbar abgeschätzt. Die Lawsonit-führenden eklogitischen Metabasite bildeten sich nahe der univarianten Reaktion Albit = Jadeit +Quarz. Ein petrogenetisches Netz, konstruiert nach der Schreinemakers Methode, zeigt, daß die P-T Bedingungen der Lawsonitführenden eklogitischen Metabasite im Gebiet von Cazadero im übergangsbereich zwischen jenen von Granat-führenden Glaukophanschiefern in Neukaledonien und Lawsonit-führenden eklogitischen Metabasiten in Korsika liegen.
Lawsonit-führende eklogitische Metabasite im Gebiet um Cazadero, Nordkalifornien

With 9 Figures  相似文献   

4.
Chloritoid–glaucophane‐bearing rocks are widespread in the high‐pressure belt of the north Qilian orogen, NW China. They are interbedded and cofacial with felsic schists originated from greywackes, mafic garnet blueschists and low‐T eclogites. Two representative chloritoid–glaucophane‐bearing assemblages are chloritoid + glaucophane + garnet + talc + quartz (sample Q5‐49) and chloritoid + glaucophane + garnet + phengite + epidote + quartz (sample Q5‐12). Garnet in sample Q5‐49 is coarse‐, medium‐ and fine‐grained and shows two types of zonation patterns. In pattern I, Xgrs is constant as Xpy rises, and in pattern II Xgrs decreases as Xpy rises. Phase equilibrium modelling in the NC(K)MnFMASH system with Thermocalc 3.25 indicates that pattern I can be formed during progressive metamorphism in lawsonite‐stable assemblages, while pattern II zonation can be formed with further heating after lawsonite has been consumed. Garnet growth in Q5‐49 is consistent with a continuous progressive metamorphic process from ~14.5 kbar at 470 °C to ~22.5 kbar at 560 °C. Garnet in sample Q5‐12 develops with pattern I zonation, which is consistent with a progressive metamorphic process from ~21 kbar at 540 °C to ~23.5 kbar at 580 °C with lawsonite present in the whole garnet growth. The latter sample shows the highest PT conditions of the reported chloritoid–glaucophane‐bearing assemblages. Phase equilibrium calculation in the NCKFMASH system with a recent mixing model of amphibole indicates that chloritoid + glaucophane paragenesis does not have a low‐pressure limit of 18–19 kbar as previously suggested, but has a much larger pressure range from 7–8 to 27–30 kbar, with the low‐pressure part being within the stability field of albite.  相似文献   

5.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

6.
The high-pressure schist terranes of New Caledonia and Sanbagawa were developed along the oceanic sides of sialic forelands by tectonic burial metamorphism. The parent rocks were chemically similar, as volcanic-sedimentary trough or trench sequences, and metamorphic temperatures in both belts were 250° to 600° C. From phase equilibria curves, total pressures were higher for New Caledonia (6–15 kb) than for Sanbagawa (5–11 kb) and the estimated thermal gradients were 7–10° C/km and 15° C/km respectively.PT paths identify the higher pressure in New Caledonia (P differences 2 kb at 300° C and 4 kb at 550° C) with consequent contrast in progressive regional metamorphic zonation for pelites in the two areas: lawsonite-epidote-omphacite (New Caledonia) and chlorite-garnet-biotite (Sanbagawa). In New Caledonia the Na-amphibole is dominantly glaucophane and Na-pyroxenes associated with quartz are Jadeite (Jd95–100) and omphacite; in Sanbagawa the amphibole is crossite or riebeckite and the pyroxene is omphacite (Jd50). For both areas, garnet rims show increase in pyrope content with advancing grade, but Sanbagawa garnets are richer in almandine. Progressive assemblages within the two belts can be equated by such reactions as:New Caledonia Sanbagawa glaucophane+paragonite+H2Oalbite+chlorite+quartz glaucophane+epidote+H2Oalbite+chlorite+actinolite and the lower pressure Japanese associations appear as retrogressive phases in the New Caledonia epidote and omphacite zones.The contrasts inPT gradient, regional zonation and mineralogy are believed due to differences in the tectonic control of metamorphic burial: for New Caledonia, rapid obduction of an upper sialic plate over an inert oceanic plate and sedimentary trough; and for Sanbagawa, slower subduction of trench sediments beneath a relatively immobile upper plate.  相似文献   

7.
In the southern Apennin (= northern part of the region dealt with) and the Coasta Chain (= southern part) there are metabasalts wich are classified in the northern part as:
  1. Glaucophane rocks of the albite-lawsonite-glaucophane-subfacies with the assemblage glaucophane + pumpellyite + lawsonite ±albite ±aragonite ±muscovite (7 rock analyses, 8 mineral analyses). These rocks are conceived as relics of an older burial metamorphism.
  2. Rocks with pumpellyite and chlorite or also chlorite alone, that are interpreted as reaction rims between the metastable glaucophane rocks and the country rock (phyllites, quartzites). The assemblages pumpellyite + chlorite and chlorite alone are to be found (2 rock analyses and 2 mineral analyses).
  3. Rocks with lawsonite and/or epidote belong to the same mineral facies as the country rock: a facies similar to the greenschist facies (called “lawsonite-albite-chlorite-subfacies”) which is characterized by the assemblages lawsonite + albite + chlorite ±calcite and also epidote ±lawsonite + albite + chlorite ± muscovite. These types are attributed to a younger dynamo-metamorphism (2 rock analyses).
In the southern part, the metabasalts can be found only as rocks with epidote and/or lawsonite, a metamorphism with more than one event cannot be proved petrologically (3 rock analyses). Equations of the observed mineral reactions are given. The transitions of one facies into another are represented in the pseudo-quaternary system Al2O3-CaO-Na2O · Al2O3-2 Fe2O3 + FeO + MnO + MgO-(H2O). The pressure-temperature conditions are estimated on the basis of published experimental data (300° C and 6–7 kb for the glaucophane rocks; 400° C and about 6 kb for the rocks with lawsonite and/or epidote) and are compared with geologic facts.  相似文献   

8.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

9.
A nappe of amphibolite-facies metamorphic rocks of pre-Permian age in the southern Vanoise massif (the Arpont schist) has been affected by an Alpine HP/LT metamorphism. The first mesoscopically recognizable deformation (D1) post-dated the high-pressure peak (jadeitic pyroxene + quartz, glaucophane + ?lawsonite), and was associated with glaucophane + epidote. D1 produced a flat-lying schistosity and a NW-trending glaucophane lineation, and was probably associated with nappe displacement involving NW-directed subhorizontal shear. D2 formed small-scale folds and a foliation associated with chlorite + albite. The changing parageneses during the period pre-D1 to D1 to D2 suggest decreasing pressure, so that the deformation appears to have been related to the uplift history, rather than to the process of tectonic burial. D2 was followed by a static metamorphism (green biotite + chlorite + albite), possibly of Lepontine age. SE-directed backthrusting and folding (D3), and later differential uplift along steep faults, took place under low-grade conditions.  相似文献   

10.
Robust quantification of pressure (P)–temperature (T) paths for subduction-related HP/UHP metamorphic rocks is fundamental in recognizing spatial changes in both the depth of detachment from the down-going plate and the thermal evolution of convergent margin sutures in orogenic belts. Although the Chinese southwestern (SW) Tianshan is a well-known example of an accretionary metamorphic belt in which HP/UHP metabasites occur in voluminous host metasedimentary schists, information about the P–T evolution of these rocks in the eastern segment is limited, precluding a full understanding of the development of the belt as a whole. In this study at Kekesu in the eastern segment of the SW Tianshan, we use microstructural evidence and phase equilibrium modelling to quantify the peak and retrograde P–T conditions from two lawsonite-bearing micaschists and an enclosed garnet–epidote blueschist; for two of the samples we also constrain the late prograde P–T path. In the two micaschist samples, relics of prograde lawsonite are preserved in quartz inclusions in garnet, whereas in the metabasite, polymineralic aggregates included in garnet are interpreted as pseudomorphs after lawsonite. For garnet micaschist TK21, which is mainly composed of garnet, phengite/paragonite, albite, chlorite, quartz and relict lawsonite, with accessary rutile, titanite and ilmenite, the maximum P–T conditions for the peak stage are 18.0–19.0 kbar at 480–485°C. During initial exhumation, the retrograde P–T path passed through metamorphic conditions of 15.0–17.0 kbar at 460–500°C. For garnet–glaucophane micaschist TK33, which is mainly composed of garnet, glaucophane, phengite/paragonite, albite, chlorite, quartz, relict lawsonite and minor epidote, with accessary titanite, apatite, ilmenite and zircon, the maximum P conditions for the peak stage are >24.0 kbar at 400–500°C. During exhumation, the P–T path passed through metamorphic conditions of 17.5–18.5 kbar at 485–495°C and 14.0–17.5 kbar at 460–500°C. For garnet–epidote blueschist TK37, which is mainly composed of garnet, glaucophane, epidote, phengite, chlorite, albite and quartz, with accessary titanite, apatite, ilmenite, zircon and calcite, the prograde evolution passed through metamorphic conditions of ~20.0 kbar at ~445°C to Pmax conditions of ~21.5 kbar at 450–460°C and Tmax conditions of 19.5–21.0 kbar at 490–520°C. During exhumation, the rock passed through metamorphic conditions of 17.5–19.0 kbar at 475–500°C, before recording P–T conditions of <17.5 kbar at <500°C. These results demonstrate that maximum recorded pressures for individual samples vary by as much as 6 kbar in the eastern segment of the SW Tianshan, which may suggest exhumation from different depths in the subduction channel. Furthermore, the three samples record similar P–T paths from ~17.0 to 15.0 kbar, which suggests they were juxtaposed at a similar depth along the subduction interface. We compare our new results with published information from eclogites in the same area before considering the wider implications of these data for the orogenic development of the belt as a whole.  相似文献   

11.
The pumpellyite–actinolite facies proposed by Hashimoto is defined by the common occurrence of the pumpellyite–actinolite assemblage in basic schists. It can help characterize the paragenesis of basic and intermediate bulk compositions, which are common constituents of various low-grade metamorphic areas. The dataset of mutually consistent thermodynamic properties of minerals gives a positive slope for the boundary between the pumpellyite–actinolite and prehnite–pumpellyite facies in PT space. In the Sanbagawa belt in Japan, the mineral parageneses of hematite-bearing and -free basic schists, as well as pelitic schists have been well documented. The higher temperature limit of this facies is defined by the disappearance of the pumpellyite+epidote+actinolite+chlorite assemblage in hematite-free basic schists with XFe3+ of epidote around 0.20–0.25 and the appearance of epidote+actinolite+chlorite assemblage with XEpFe3+≤0.20. In hematite-bearing basic schists, there is a continuous change of paragenesis to higher grade, epidote–glaucophane or epidote–blueschist facies. In pelitic schists, the albite+lawsonite+chlorite assemblage does occur but only rarely, and its assemblage cannot be used to determine the regional thermal structure. The lower temperature equivalence of the pumpellyite–actinolite assemblage is not observed in the field. The Mikabu Greenstone complex and the northern margin of the Chichibu complex, which are located to the south of the Sanbagawa belt, are characterized by clinopyroxene+chlorite or lawsonite+actinolite assemblages, which are lower temperature assemblages than the pumpellyite+actinolite assemblage. These three metamorphic complexes belong to the same subduction-metamorphic complex. The pumpellyite–actinolite facies or subfacies can be useful to help reveal the field thermal structure of metamorphic complexes  相似文献   

12.
An Early Palaeozoic (Ordovician ?) metamudstone sequence near Wojcieszow, Kaczawa Mts, Western Sudetes, Poland, contains numerous metabasite sills, up to 50 m thick. These subvolcanic rocks are of within-plate alkali basalt type. Primary igneous phases in the metabasites, clinopyroxene (salite) and kaersutite, are veined and partly replaced by complex metamorphic mineral assemblages. Particularly, the kaersutite is corroded and rimmed by zoned sodic, sodic–calcic and calcic amphiboles. The matrix is composed of actinolite, pycnochlorite, albite (An ≤ 0.5%), epidote (Ps 27–33), titanite, calcite, opaques and, occasionally, biotite, phengite and stilpnomelane. The sodic amphiboles are glaucophane to crossite in composition with NaB from 1.9 to 1.6. They are rimmed successively by sodic–calcic and calcic amphiboles with compositions ranging from magnesioferri-winchite to actinolite. No compositions between NaB= 0.92 and NaB= 1.56 have been ascertained. The textures may be interpreted as representing a greenschist facies overprint on an earlier blueschist (or blueschist–greenschist transitional) assemblage. The presence of glaucophane and no traces of a jadeitic pyroxene + quartz association indicate pressures between 6 and 12 kbar during the high-pressure episode. Temperature is difficult to assess in this metamorphic event. The replacement of glaucophane by actinolite + chlorite + albite, with associated epidote, allows restriction of the upper pressure limit of the greenschist recrystallization to <8 kbar, between 350 and 450°C. The mineral assemblage representing the greenschist episode suggests the P–T conditions of the high-pressure part of the chlorite or lower biotite zone. The latest metamorphic recrystallization, under the greenschist facies, may have taken place in the Viséan.  相似文献   

13.
A new discovery of lawsonite eclogite is presented from the Lancône glaucophanites within the Schistes Lustrés nappe at Défilé du Lancône in Alpine Corsica. The fine‐grained eclogitized pillow lava and inter‐pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter‐pillow matrix consist of zoned idiomorphic Mg‐poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth‐type zoning with a Mn‐rich core. In the inter‐pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites. Matrix omphacite in both rock types is zoned with a rimward increase in XJd, locally with cores of relict augite. Numerous inclusions of clinopyroxene, lawsonite, chlorite and titanite are encapsulated within garnet in both rock types, and albite, quartz and hornblende are also found included in garnet from the inter‐pillow matrix. Inclusions of clinopyroxene commonly have augitic cores and omphacitic rims. The inter‐pillow matrix contains cross‐cutting omphacite‐rich veinlets with zoned omphacite, Si‐rich phengite (Si = 3.54 apfu), ferroglaucophane, actinolite and hematite. These veinlets are seen fracturing idiomorphic garnet, apparently without any secondary effects. Pseudosections of matrix compositions for the massive pillows, the inter‐pillow matrix and the cross‐cutting veinlets indicate similar P–T conditions with maximum pressures of 1.9–2.6 GPa at temperatures of 335–420 °C. The inclusion suite found in garnet from the inter‐pillow matrix apparently formed at pressures below 0.6–0.7 GPa. Retrogression during initial decompression of the studied rocks is only very local. Late veinlets of albite + glaucophane, without breakdown of lawsonite, indicate that the rocks remained in a cold environment during exhumation, resulting in a hairpin‐shaped P–T path.  相似文献   

14.
Detailed laboratory study has been made on pre-Tertiary coarse-grainedglaucophane schist, garnet-epidote amphibolite, and epidoteamphibolite in the eastern slope of the Central Mountain Range,Taiwan. These petrotectonic assemblages are considered to beexotic tectonic blocks emplaced within the feebly metamorphosedin situ graphite and quartzose schists of the Yuli belt. Thinlenses of Mn-rich metamorphosed tuff are intercalated withinthe metabasaltic rocks. Such high MnO (2 wt. per cent) and lowMgO (3–4 wt. per cent) tuffaceous rocks are similar inbulk composition to some volcanic clays collected in deep oceanbasins. They consist of the characteristic assemblage Mn-bearinggarnet (5–7 wt. per cent MnO and 30 volume per cent inthe rock)+muscovite+epidote+hornblende+quartz+ albite+rutile?pyrite. Successive stages of conversion of garnet-epidote amphiboliteto blueschist assemblages were noticed. The most recrystallizedschists display abundant Mn-bearing garnet, zoned amphibole,phengite, zoned epidote, stilpnomelane, chlorite, quartz, minoralbite, magnetite, and sphene. The recrystallization processis nearly isochemical except the glaucophane schists appearto be more oxidized and contain more Na2O than the relict amphibolites.Intimately associated amphibolites of basaltic composition,in contrast, contain the assemblage hornblende+paragonite+epidote+chlorite+quartz+albite+rutile. Microprobe analyses of the coexisting minerals in glaucophaneschists, garnet-epidote amphibolites and epidote amphibolitesyield the following results: (1) garnets, consisting of almandine,spessartine, and grossular components, are less Mn and Mg-richcompared to those in in situ metabasalts of the Franciscan;(2) rim epidotes of the glaucophane schists are more pistastic(XFe=0?27–0?30) than that of the garnet-epidote amphibolite(0?2–0?22) implying higher fO2 values for the glaucophanization;(3) phengitic micas of the glaucophane schist have less Al2O3content (29 wt. per cent) than those of the garnet-epidote amphibolite(32 wt. per cent) whereas micas of epidote amphibolites areparagonites with K/(K+Na) ratio of 0?04; (4) the zoned amphibolesshow glaucophane occurring marginal to cores of calcic amphibole.Sodic amphiboles with Al2O3 of 6-? to 10?4 wt. per cent arecrossite-glaucophane whereas all calcic amphiboles analyzedare barroisite-pargasite (Al2O3 greater than 10 wt. per cent). The garnet-epidote-rutile bearing glaucophane schist of Taiwanprobably recrystallized at temperatures above 350 ?C (the epidotezone) whereas the lawsonite-sphene glaucophane schists of theFranciscan equilibrated below 350 ?C (the lawsonite zone). TheMn-rich basaltic tuffs and their associated flows appear tohave been metamorphosed at profound depths and at the relativelyhigh temperatures of the epidote amphibolite facies, succeededlater by glaucophane schist facies metamorphism at lower temperatures.  相似文献   

15.
An undated high-pressure low-temperature tectonic mélange in the Elekda area (central Pontides, N Turkey) comprises blocks of MORB-derived lawsonite eclogite within a sheared serpentinite matrix. In their outer shells, some of the eclogite blocks contain large (up to 6 cm) tourmaline crystals. Prograde inclusions in poikiloblastic garnet from a well-preserved eclogite block are lawsonite, epidote/clinozoisite, omphacite, rutile, glaucophane, chlorite, Ba-bearing phengite, minor actinolite, winchite and quartz. In addition, glaucophane, lawsonite and rutile occur as inclusions in omphacite. These inclusion assemblages document the transition from a garnet-lawsonite-epidote-bearing blueschist to a lawsonite eclogite with the peak assemblage garnet + omphacite I + lawsonite + rutile. Peak metamorphic conditions are not well-constrained but are estimated approximately 400–430°C and >1.35 GPa, based on Fe–Mg exchange between garnet and omphacite and the coexistence of lawsonite + omphacite + rutile. During exhumation of the eclogite–serpentinite mélange in the hanging wall of a subduction system, infiltration of B-rich aqueous fluids into the rims of eclogite blocks caused retrogressive formation of abundant chlorite, titanite and albite, followed by growth of tourmaline at the expense of chlorite. At the same time, omphacite I (XJd=0.24–0.44) became unstable and partially replaced by omphacite II characterized by higher XJd (0.35–0.48), suggesting a relatively low silica activity in the infiltrating fluid. Apart from Fe-rich rims developed at the contact to chlorite, tourmaline crystals are nearly homogeneous. Their compositions correspond to Na-rich dravite, perhaps with a small amount of excess (tetrahedral) boron (~5.90 Si and 3.10 B cations per 31 anions). 11 B values range from –2.2 to +1.7. The infiltrating fluids were most probably derived from subducting altered oceanic crust and sediments.  相似文献   

16.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

17.
北祁连山硬柱石蓝片岩p-T条件相平衡计算及其岩石学意义   总被引:2,自引:0,他引:2  
北祁连硬柱石蓝片岩主要分布在甘肃省肃南县九个泉一带,是目前中国唯一报道的、确切地含有硬柱石的蓝片岩。文中在详细的岩石学和矿物学研究基础上,根据矿物共生组合的不同,将北祁连低温蓝片岩进一步划分为绿纤石蓝片岩、硬柱石蓝片岩和绿帘石蓝片岩。绿纤石蓝片岩的特征变质矿物组合为蓝闪石(>40%)+绿纤石(30%)+绿泥石(10%)+钠长石(8%)+石英(5%)+硬柱石(<3%)±方解石/文石(<1%)。硬柱石蓝片岩的矿物组合为蓝闪石(35%~40%)+硬柱石(35%~40%)+绿泥石(10%)+钠长石(10%)+石榴石(1%~2%)+黝帘石/斜黝帘石(<2%)+石英(<1%),副矿物有磷灰石和榍石,总含量小于2%。绿帘石蓝片岩的矿物组合为蓝闪石(30%~35%)+黝帘石/斜黝帘石/绿帘石(~30%)+绿泥石(15%)+钠长石(15%)+石榴石(2%)+石英(<2%),副矿物有金红石、磷灰石和磁铁矿,总含量小于2%。利用矿物内部一致性热力学数据和Domino/Theriak软件计算了这三种类型的蓝片岩形成的峰期温压条件,它们分别是绿纤石蓝片岩为320~350℃,0.75~0.85GPa;硬柱石蓝片岩为335~355℃,0.8~0.95GPa;绿帘石蓝片岩为345~375℃;0.75~0.85GPa。北祁连低温蓝片岩带由硬柱石蓝片岩相到绿帘石蓝片岩相的转化代表了俯冲变质过程中的递进变质过程。  相似文献   

18.
High-grade exotic blocks in the Franciscan Complex at Jenner, California, show evidence for polydeformation/metamorphism, with eight distinct stages. Two parallel sets of mineral assemblages [(E) eclogite, and (BS) laminated blueschist] representing different bulk chemistry were identified. Stage 1, recorded by parallel aligned inclusions (S1) of crossite + omphacite + epidote + ilmenite + titanite + quartz (E), and glaucophane + actinolite + epidote + titanite (BS) in the central parts of zoned garnets, represents the epidote blueschist facies. The onset of a second stage (stage 2) is represented by a weak crenulation of S1 and growth of garnet. This stage develops a well-defined S2 foliation of orientated barroisite + epidote + titanite (E), or subcalcic actinolite + epidote + titanite (BS) at c. 90d? to S1, with syntectonic growth of garnet, defining the (albite-)epidote-amphibolite facies. A third stage, with aligned inclusions of glaucophane + (subcalcic) actinolite + phengite parallel to S2 in the outermost rims of large garnet grains, is assigned to the transitional (albite-)epidote-amphibolite/(garnet-bearing) epidote blueschist facies. The fourth stage represents the peak metamorphism, and was identified by unorientated matrix minerals in the least retrograded samples. In this stage the mineral assemblages garnet + omphacite + glaucophane + phengite (E) and garnet + winchite + phengite + epidote (BS) both represent the eclogite facies. Stage 5 is represented by the retrogression of eclogite facies assemblages to the epidote blueschist facies assemblages crossite/glaucophane + garnet + omphacite + epidote + phengite (E), and glaucophane + actinolite + epidote + phengite (BS), with the development of an S5 foliation subparallel to S2. Stage 6 represents a crenulation of S5, with the development of a well-defined S6 crenulation cleavage wrapping around relics of the eclogite facies assemblages. This crenulation cleavage is further weakly crenulated during a D7 event. Post-D7 (stage 8) is recorded by the growth of lawsonite + chlorite ± actinolite replacing garnet, and by veins of lawsonite + pumpellyite + aragonite and phengite + apatite. The different, yet coeval, mineral parageneses observed in rock types (E) and (BS) are probably due to differences in bulk chemistry. The metamorphic evolution from stage 1 to stage 8 seems to have been broadly continuous, following an anticlockwise P-Tpath: (1) epidote blueschist (garnet-free) to (2) (albite-)epidote-amphibolite to (3) transitional epidote blueschist (garnet-bearing)/(albite-)epidote-amphibolite to (4) eclogite to (5) epidote blueschist (garnet-bearing) to (6-7) epidote blueschist (garnet-free) facies to (8) lawsonite + pumpellyite + aragonite-bearing assemblages. This anticlockwise P-T path may have resulted from a decreasing geothermal gradient with time in the Mesozoic subduction zone of California at early or pre-Franciscan metamorphism.  相似文献   

19.
In the metabasites of Val Chiusella, metamorphic assemblages are present, corresponding to the glaucophane schist facies, i.e. garnet glaucophanites to omphacite-garnet glaucophanites, as well as to the eclogite facies, i.e., glaucophane eclogites, eclogites, and omphacite felses. Both groups of assemblages are divided by the critical reaction 1 zoisite +1 glaucophane 1.2 omphacite+0.8 garnet+0.7 paragonite +1.4 quartz+0.8 H2O. From textural evidence it is clear that in the investigated area this reaction proceeded to the right according to a prograde metamorphism. Correspondingly, K garn-cpx D(Fe/Mg) values of coexisting garnet-omphacite pairs in the glaucophane schist facies assemblages are higher than in the eclogite facies assemblages and reflect a temperature increase from about 450 ° C to about 550 ° C at minimum water vapour pressures of 12 to 16 kb.  相似文献   

20.
A reaction producing jadeitic pyroxene in metagreywackes of the northern Diablo Range has been identified on the basis of mineral distribution, isograd patterns and composition of coexisting minerals. The appearance of jadeitic pyroxene (∼Jd80) is closely followed by the disappearance of pumpellyite, which indicates that pumpellyite plays a major role in the pyroxene-producing reaction. A new projection from hematite, lawsonite, chlorite, quartz and H2O on to the NaAlO2-FeO-MgO ternary confirms the role of pumpellyite in pyroxene production and suggests a reaction of the form: 1.00 pumpellyite + 0.31 chlorite + 8.71 albite + 0.70 hematite + 2.00 H2O = 8.54 jadeite + 0.57 glaucophane + 3.09 lawsonite + 5.26 quartz. Metagreywackes of the northern Diablo Range were metamorphosed under conditions of P H2O= P total at 200-300 °C and 7.5-10.0 kbar. Despite the low temperatures attained during metamorphism, the assumption of equilibrium yields results consistent with field observations and phase relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号