首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
大量的低温年代学研究用来讨论龙门山晚新生代的隆升,但很少涉及其走向差异和中生代隆升。本文分别沿龙门山北、中、南段3条剖面进行了锆石和磷灰石裂变径迹测试,结合已有的热年代学数据,以期揭示整个中 新生代期间龙门山隆升历史及其时空变化。中生代以来,龙门山主要有印支期(约200 Ma)、早白垩世末(约100 Ma)、早新生代(65~30 Ma)以及晚中新世(15~9 Ma)等或快或慢的冷却事件,总体上经历了中生代至早新生代的缓慢冷却和晚新生代快速冷却2个阶段,快速剥露开始于15~9 Ma,剥蚀速率由早期的<0.1mm/a增加到0.15~0.3mm/a左右,局部可达0.9mm/a左右。走向上,龙门山北段相对偏小的锆石裂变径迹年龄和相对偏大的磷灰石裂变径迹年龄反映其在中生代较中、南段隆升更快,而裂变径迹年龄总体上从北段向中、南段减小,表明中、南段在新生代发生了更快的隆升。倾向上,多种热年代学数据显示新生代期间在北川断裂和彭灌断裂两侧存在明显的差异剥露,这种差异在中、南段表现比北段更为突出。龙门山晚新生代快速隆升和剥露是青藏高原区域隆升背景上叠加的冲断活动所致,而非下地壳流动驱动。  相似文献   

2.
通过对采自龙门山南段、中段和北段花岗岩与砂岩样品中的磷灰石、锆石的裂变径迹年龄的分析,发现中生代以来龙门山的隆升在走向上存在分段性,在近东西方向上存在分带性。从松潘-甘孜褶皱带→龙门山冲断带→川西前陆盆地:松潘-甘孜褶皱带整体发生区域隆升,裂变径迹年龄与高程呈正相关关系;在龙门山冲断带,裂变径迹年龄与高程呈负相关关系或无关,说明冲断层在隆升过程中起主导作用;在川西前陆盆地,样品随埋深发生部分或全部退火。茂县-汶川断裂两侧锆石裂变径迹年龄差异明显而磷灰石裂变径迹年龄无明显差异,显示茂县-汶川断裂以西地区在38~10 Ma发生过更为快速的隆升;北川断裂两侧磷灰石裂变径迹年龄差异明显,表明北川断裂以西地区在10~0 Ma发生过快速隆升。从走向上看,从龙门山北段向南段,锆石裂变径迹年龄呈逐渐增大的趋势,这可能意味着印支末期或燕山早期,龙门山北段发生了更快的隆升;而磷灰石裂变径迹年龄总体上从龙门山北段向中段和南段呈递减趋势,反映新生代期间龙门山中、南段隆升更快。  相似文献   

3.
喜马拉雅山脉新生代差异隆升的裂变径迹热年代学证据   总被引:2,自引:1,他引:2  
刘超  王国灿  王岸  王鹏  任春玲 《地学前缘》2007,14(6):273-281
裂变径迹年龄资料记录的雅鲁藏布江以南的喜马拉雅山脉的冷却年龄具有明显的时空差异性。在南北方向上,特提斯喜马拉雅的冷却年龄主要在8 Ma以前,局部为5.0~2.6 Ma,而高喜马拉雅的冷却年龄集中在5 Ma以后,大多数在3 Ma以来;在东西方向上体现在喜马拉雅东西构造结之间的高喜马拉雅带上,东喜马拉雅的不丹东部区域的裂变径迹热年代学数据揭示了8.0~3.0 Ma的冷却剥露的历史;东喜马拉雅的不丹西部区域为7.0~1.4 Ma;中喜马拉雅的尼泊尔地区为5.0~0.2 Ma;西喜马拉雅的印度西北部地区为3.0~1.0 Ma。最年轻的裂变径迹年龄显示出由中间向两侧增大,反映了地质晚近时期东西构造结间的高喜马拉雅山脉的剥露幅度由中间向两边减弱的趋势,揭示了以中喜马拉雅为隆升中心向两边拓展的趋势。综合有关裂变径迹年代学资料表明,喜马拉雅山脉的隆升主要发生在中新世以来,其表现为18~11 Ma、9 Ma以来的两个快速隆升期。喜马拉雅山脉隆升的动力体制可能由早期的挤压隆升—中新世的伸展隆升—上新世以来构造隆升为主,局部气候作用和构造作用耦合的山脉隆升机制。  相似文献   

4.
新生代阿尔金山脉隆升历史的裂变径迹证据   总被引:47,自引:5,他引:47  
10个片麻岩和花岗岩的磷灰石裂变径迹年龄值位于35.6~13.6 Ma之间,表明了阿尔金山脉的隆升开始于渐新世,并一直延续至中新世.山脉早期的隆升速率较低,后期可能存在一个快速的隆升时期;阿尔金山脉并非整体的均匀隆升,其内分布的NEE走向的断裂也局部控制了山体的隆升;如果山脉的隆升是阿尔金断裂左行走滑的结果,那么可推测阿尔金断裂大型左行走滑的起始时间应为渐新世.区域资料分析表明,青藏高原北缘在渐新世至中新世期间发生了大规模的、区域性的抬升.  相似文献   

5.
白垩纪的隆升-剥露事件在新疆不同构造单元广泛发育。本文主要是通过磷灰石裂变径迹测年技术,结合温度-时间热模拟反演的研究,探讨西天山北段和中段白垩纪的隆升-剥露过程。17个样品分别采自西天山北段的博罗科鲁山、依连哈比尔尕山以及西天山中段的独库公路附近的花岗岩体。裂变径迹测试结果显示,样品的径迹年龄介于45.4±3.2~81.6±4.9 Ma,平均径迹长度介于12.62±0.17~13.53±0.14μm之间。进一步根据温度-时间的模拟结果推断,西天山北段和中段在晚白垩世都经历了快速隆升-剥露过程。在时间上,西天山北段样品记录的快速隆升的时间主要集中在50~70 Ma之间,西天山中段样品记录的快速隆升时间集中在70~90Ma之间。结合相应的地质证据,认为从晚白垩世开始,西天山地区开始出现差异性的隆升剥露过程,伊犁盆地从早中白垩世隆升剥蚀状态转变为晚白垩世接受沉积,其两侧山脉继续处于快速隆升剥蚀的状态。导致这种隆升-剥露事件的动力学机制是受多因素综合控制的,印亚碰撞的远程效应可能是该期事件的主要动力来源,但天山不同地段的热-流变性质的差异性及不同块体之间的相互作用是导致差异性隆升-剥蚀的主要因素。  相似文献   

6.
根据对东昆仑地区东段哈拉郭勒—哈图一带不同高度基岩的系列锆石裂变径迹年龄分析,结合磷灰石裂变径迹年龄分析和中酸性侵入岩角闪石压力计分析揭示了东昆仑东段中生代的岩石隆升剥露冷却历史.巴隆哈图一带中酸性侵入岩角闪石压力计分析结果反映晚海西—印支期以来的总体剥露幅度约8~9km,早二叠世至晚三叠世初剥蚀作用极为缓慢,大约为20~40m/Ma.不同高程样品的锆石裂变径迹年龄分析结果揭示了东昆仑地区东段在中晚侏罗世处于缓慢的岩石隆升剥露阶段,其中中侏罗世相对较快,抬升速率77~88m/Ma,晚侏罗世相对较慢,抬升速率小于37m/Ma,且呈减慢趋势,这种减慢趋势反映了早中侏罗世之交强构造抬升期后的逐渐衰退.锆石裂变径迹—磷灰石裂变径迹年龄分析结果反映了中侏罗世以来的剥蚀速率一般不超过55m/Ma,岩石的剥蚀速率与岩石的抬升速率基本为同一量级,中侏罗世—白垩纪剥蚀作用与岩石抬升作用基本处于平衡状态。  相似文献   

7.
裂变径迹法与青藏高原隆升   总被引:1,自引:0,他引:1  
裂变径迹法是20世纪60年代发展起来的一种放射性同位素年代学方法,以测年范围广, 样品用量少,方法简便等优点,在地质学和考古研究中获得了广泛应用.近些年,随着径迹退火特性和径迹长度研究的深入,裂变径迹方法在造山带热历史分析和构造隆升过程研究中发挥了重要的作用,它不仅能为构造隆升研究提供年代控制,而且还能获得隆升幅度、隆升速率及隆升方式以及低温热历史等比较全面的山体隆升史资料, 成为研究构造隆升十分简捷、有效的方法.本文首先简述了裂变径迹方法研究构造隆升的基本原理,然后介绍了研究构造隆升的3种方法:年龄-高程法、矿物对法和径迹长度分析法,并对青藏高原构造隆升研究进展作了简要回顾,综合分析已有的青藏高原裂变径迹年代数据,发现在中新世晚期(约10~8 Ma)之前隆升速率较慢,之后隆升速率加快,尤其是上新世晚期(4~3 Ma)以来隆升速率迅速加快.这与地层学、沉积学等其他传统方法得出来的结论基本一致.并探讨了将来青藏高原裂变径迹研究的方向.  相似文献   

8.
四川盆地东南缘中新生代构造隆升的裂变径迹证据   总被引:5,自引:0,他引:5       下载免费PDF全文
通过对四川盆地东南缘8件不同层位的磷灰石样品裂变径迹的分析,获得了该区中新生代构造隆升的时限,并分析了其构造和油气地质意义。磷灰石裂变径迹分布形态总体具有单峰特征,部分具有双峰特征,平均径迹长度在10~13μm,标准偏差在1.5~2.5μm,反映了磷灰石在地质历史时期经历过较缓慢的冷却退火过程。样品的热史模拟结果显示,所有样品在进入部分退火带(PAZ)以后没有再经历明显的沉降埋藏,均表现为持续的隆升,但不同地区进入隆升期的先后次序不同。盆地东南缘的隆升起始时间在95~60Ma左右,即晚白垩世—古近纪,向北到达盆地边缘的时间为40~35Ma,为古近纪晚期。几乎所有的样品都具有晚期快速抬升的特点,抬升时限均在10Ma以内,多数小于5Ma,部分小于2Ma。从油气地质的角度看,川东南地区喜山期的强烈隆升一方面可能造成已有的气藏破坏,另一方面也可能有利于形成新的具裂缝性储层的岩性气藏或者水溶气气藏。  相似文献   

9.
应用磷灰石裂变径迹定年,对出露于青藏高原腹地羌塘地体唐古拉山中央隆起带北坡不同高程的木乃花岗岩进行了系统的裂变径迹测年,分别获得(66.9&#177;10.9)Ma,(66.7&#177;16.1)Ma,(65.2&#177;9.9)Ma,(55.8&#177;5.4)Ma和(55.6&#177;7.5)Ma等中值年龄;部分磷灰石裂变径迹年龄与花岗岩体的形成年龄(67.1&#177;2.0)Ma相当,这从另一角度证明了唐古拉山木乃花岗岩形成于白垩纪末期的事实。根据青藏高原羌塘地体的古地温梯度为2.45℃/100m~2.68℃/100m,磷灰石冷却温度为110℃,求得的木乃花岗岩浆成岩深度为4100m~4500m,木乃花岗岩的平均剥蚀速率为0.061mm/a~0.081mm/a,据此推算出藏北唐古拉山木乃地区的在中生代末以来的地壳隆升幅度至少在9550m~9950117.以上.  相似文献   

10.
基于磷灰石裂变径迹(AFT)的分析方法,探讨鄂尔多斯盆地东北缘差异隆升过程及其隆升强度,为鄂尔多斯盆地东北缘(晋西挠摺带府谷—吴堡区段)构造演化历史及其与多种能源矿产耦合关系提供新的认识。不同构造单元及其不同层系样品的AFT分析表明:研究区北段府谷—兴县地区构造抬升相对较早,且经历了白垩纪晚期(86~56Ma)和古近纪(44~37 Ma)两次隆升过程,平均隆升速率分别为24.5 m/Ma和41.8 m/Ma;研究区中段紫金山地区抬升相对较晚,主控构造事件发生在晚白垩世末期—古近纪早期(68~56 Ma)和古近纪中晚期(35 Ma),平均隆升速率分别为48.8 m/Ma和49.2 m/Ma;研究区南段临县—吴堡地区抬升最晚(35~21 Ma),平均隆升速率为73.9 m/Ma。因此,鄂尔多斯盆地东北缘晚白垩世以来的差异隆升过程具有北段抬升早、中段抬升相对较晚和南段抬升更晚的特点,南北区段统一的强烈构造抬升活动主要发生在古近纪以来的晚近时期,且构造隆升强度由南向北逐渐减弱。结合已有的成矿(藏)年代学资料分析表明,鄂尔多斯盆地东北缘关键构造事件及其隆升强度与多种矿产耦合成矿(藏)事件关系密切,构造事件与成藏(矿)事件呈现出显著的协同耦合特点。  相似文献   

11.
郯庐断裂带对鲁西隆升过程的影响:磷灰石裂变径迹证据   总被引:2,自引:1,他引:2  
郯庐断裂带(TLFZ)是一条贯穿华北的NNE向巨型断裂带。新生代以来,在郯庐断裂带的两侧及其内部发生了显著的伸展构造变形,形成了泰安-莱芜-蒙阴NW向断陷盆地群,并使鲁西块体发生了急剧的陆内伸展隆升。本文在前人研究的基础上,分别在鲁西沂山、徂徕山和蒙山三处进行了大量的样品采集,总计完成了25个样品的测试,获得了一系列新的磷灰石裂变径迹(AFT)年代学结果。结合前人已发表的裂变径迹结果,对鲁西地区新生代与伸展变形有关的剥露-隆升作用的时空分布特征、隆升剥露模式及隆升幅度进行分析,并揭示郯庐断裂带在鲁西新生代热隆升过程中的影响。主要认识有:1)新生代以来,鲁西主要经历了始新世-早渐新世和新近纪以来两期快速剥露-隆升阶段。2)始新世-早渐新世主要表现为幕式差异性快速剥露-隆升,鲁西南受NW向断层控制形成向北、向东的掀斜抬升作用,鲁西北受NE向断裂控制,形成向北、向西的掀斜抬升作用。新近纪以来,进入相对低速区域性剥露-隆升阶段。3)AFT模拟显示,与始新世-早渐新世的幕式快速剥露-隆升相比,中新世以来,鲁西剥露-隆升速率相对减小,但剥蚀量剥露-抬升量较大。故鲁西整体抬升于中新世以来。4)结合前人研究成果,新生代以来,鲁西宏观上受郯庐断裂带伸展活动影响,越靠近郯庐断裂带剥蚀量越大,局部受NW或NE向断裂控制。  相似文献   

12.
李理  钟大赉 《岩石学报》2018,34(2):483-494
对采自渤海湾盆地东南部济阳坳陷的碎屑岩进行测年研究,目的是通过碎屑锆石裂变径迹年龄揭示源区及其抬升剥露史和构造热事件,为华北克拉通构造演化特别是元古宙构造演化提供新的热年代学约束。14件上白垩统-上新统砂岩/粉砂岩岩心样品测年结果显示,锆石裂变径迹年龄分布在308±35Ma~145±19Ma之间,且所有单颗粒锆石径迹年龄均大于其沉积年龄,表明这些锆石为碎屑锆石。除1件样品外,其余13件样品的单颗粒年龄的,可以用来识别源区及其构造抬升。未通过χ2检验的锆石二项式最佳拟合峰值年龄集中分为9组:P1(1187Ma)、P2(720~548Ma)、P3(526Ma)、P4(330~319Ma)、P5(296~274Ma)、P6(213~201Ma)、P7(195~177Ma、162Ma)、P8(134~102Ma)和P9(94Ma),加上通过χ2检验的三叠纪(230Ma),指示源区中元古代-晚白垩世经历的9期构造抬升/岩浆活动。它们分别是发生在中元古代的芹峪运动、新元古代的构造抬升(约720~575Ma)、~548Ma的蓟县运动;古生代~526Ma早寒武世末构造运动、海西期构造抬升;晚三叠世印支期挤压构造抬升、早-中侏罗世印支期弱挤压抬升、早白垩世燕山期强烈岩浆活动及晚白垩世燕山晚期的抬升。华北克拉通北缘、克拉通内部古陆和盆地内部是渤海湾盆地上白垩统-上新统的主要物源区,古生代以来剥露速率逐渐增大,古生代、三叠纪、早-中侏罗世和白垩纪分别为0.020~0.033mm/y,0.033~0.042mm/y,0.034~0.049mm/y和0.041~0.097mm/y,反映源区白垩纪构造/岩浆活动最强烈。锆石裂变径迹年龄记录的中元古代-晚白垩世构造运动对探讨华北克拉通的构造演化特别是元古宙的演化提供了年代学证据,综合分析推断华北克拉通可能参与了Rodinia超大陆的形成与裂解。  相似文献   

13.
通过青藏高原东部川西地区雀儿山花岗岩体磷灰石裂变径迹分析,新获得了4个磷灰石裂变径迹年龄值,分别为4.9 ±0.3Ma、6.2 ±0.5 Ma、7.2 ±0.4 Ma和7.3 ±0.7 Ma。运用径迹年龄-地形高差法计算出雀儿山花岗岩体新近纪的隆升速率,为0.15~2 mm/a,平均隆升速率为0.78mm/a。隆升速率在每个阶段有所不同,但呈现出一种快速隆升→缓慢隆升的过程,为整个青藏高原东缘的隆升过程提供了约束条件。  相似文献   

14.
赵珍  陆露  吴珍汉  胡道功 《地质通报》2017,36(9):1553-1561
西藏冈底斯南缘中酸性侵入岩的磷灰石裂变径迹年龄在37~25Ma之间,热史模拟过程反映冈底斯经历了3个阶段的抬升演化。40~26Ma的快速冷却抬升阶段:受控于印度-欧亚大陆完全碰撞拼合的影响,并在37~26Ma抬升至现今海拔高度;26~8Ma的剥蚀阶段:受夷平和大型逆冲推覆活动的影响,出现剥蚀和抬升交替过程;8~0Ma的缓慢冷却阶段:受南北向裂谷作用影响,出现内部差异抬升。此外,北部墨竹工卡地区和南部泽当、桑耶地区,西部桑耶地区和东部泽当地区,均具有相似的抬升过程和历史,没有明显差异,暗示冈底斯经历了整体性、较均一的阶段性抬升过程。  相似文献   

15.
阿尔金-祁连山位于青藏高原北缘, 其新生代的隆升-剥露过程记录了高原变形和向北扩展的历史, 对探讨高原隆升动力学具有重要意义。本文采用岩屑磷灰石裂变径迹测年分析, 利用岩屑的统计特征限定阿尔金-祁连山新生代的隆升-剥露过程。磷灰石裂变径迹测试结果表明, 阿尔金-祁连山地区存在4个阶段的抬升冷却: 21.1~19.4 Ma、13.5~10.5 Ma、9.0~7.3 Ma、4.3~3.8 Ma。其中, 4.3~3.8 Ma抬升冷却事件仅体现在祁连山地区, 9.0~7.3 Ma抬升冷却事件在区内普遍存在, 且9.0~7.3 Ma隆升-剥露造就了现代阿尔金-祁连山的地貌。区域资料分析表明, 9~7 Ma(或者8~6 Ma)期间, 青藏高原北缘、东缘, 甚至整个中国西部地区发生了大规模、区域性的抬升, 中国现今"西高"的构造地貌形态可能于当时开始形成。阿尔金-祁连山地区4期抬升冷却事件与青藏高原的隆升阶段有很好的对应关系, 应该是对印度-欧亚板块碰撞的响应。  相似文献   

16.
对采自大兴安岭北段漠河盆地及盆地西南缘10个中酸性侵入岩样品进行了磷灰石裂变径迹年代学测试。测试结果显示,样品的径迹年龄介于72±7~99±5Ma之间,平均径迹长度介于12.5±1.5~13.7±1.8μm之间。利用热史模拟软件AFTSovle对样品进行热史模拟,结果表明,大兴安岭北段中新生代主要经历了2个重要的构造运动阶段,分别为白垩纪(120~90Ma)快速隆升剥蚀阶段及古新世(约60Ma)以来快速隆升剥蚀阶段。由此推测,这2个构造运动事件的形成分别主要受中生代末古太平洋俯冲及新生代太平洋俯冲的影响。  相似文献   

17.
The Yitong Basin is an oil-bearing basin with unique characteristics in Northeast China. On the basis of apatite fission track ages and geological relationship, the tectonic uplift history of the Yitong Basin since the Oligo-cene was discussed. Based on apatite fission track analysis of five samples from the Luxiang and Chaluhe fault de-pressions and basin modeling study, it can be concluded that since the Oligocene (36.6 Ma) in the Yitong Basin, the Chaluhe fault depression has undergone two episodes of uplift during 24.9–19.1 Ma and 6.9–4.9 Ma. And the Luxi-ang fault depression also had undergone two episodes of uplift during 30–27.8 Ma and 22.6–11.1 Ma. Moreover, the average apparent exhumation rates for the Chaluhe fault depression and Luxiang fault depression, could be calcu-lated to be 70.34 and 60.33 m/Ma since 21.8 Ma and 18.9 Ma, respectively. The results of thermochronological analysis can also be supported by the evidence from geological relationships such as geodynamics, volcanic activity, and stratigraphic division and correlation.  相似文献   

18.
The Shi-Hang Belt is a Mesozoic tectonic zone and has always been regarded as the boundary between the Yangtze and Cathaysia blocks. It occupies a key tectonic location and attracts considerable attention due to its dynamic formation mechanism. However, its Cenozoic dynamic process is poorly constrained. The Cenozoic activation of the Shi-Hang Belt, as well as its cooling and exhumation, aids in dating the onset time of the formation of the mountain ranges and reveals the deformation process of the South China Block. To uncover the history of its Cenozoic cooling and denudation, apatite fission-track (AFT) thermochronology was applied to batholiths and strata spread across the Shi-Hang Belt in the Hunan Province. Twenty-three samples are dated with ages ranging from 23.6 ± 1.5 to 45.8 ± 3.0 Ma. Except for two older ages (42.1 ± 2.6 and 45.8 ± 3.0 Ma), the other ages range from 23 to 36 Ma with less variation on both sides of the Chenzhou–Linwu fault. The thermochronological modelling of 15 measured samples demonstrates that rocks rapidly passed through the AFT partial annealing zone to the near surface at different onset times from 36 to 23 Ma. The regional AFT cooling pattern is unrelated to the internal structures of the Shi-Hang Belt characterized by a Mesozoic fold-thrust feature. We attribute the Cenozoic exhumation of the Shi-Hang Belt to the dynamic topography of the South China Block, which is related to mantle downwellings and upwellings due to several episodes of quick subduction of the Pacific Plate underneath Eurasia during the Late Cretaceous–early Cenozoic and the Oligocene–early Miocene. The far-field effect of the India–Tibet collision may have contributed to the exhumation of the Shi-Hang Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号