首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
2.
The premise of the Wilson et al. comment is that the Ti-in-quartz solubility calibration (Thomas et al. in Contrib Mineral Petrol 160:743–759, 2010) is fundamentally flawed. They reach this conclusion because PT estimates using the Ti-in-quartz calibration differ from their previous interpretations for crystallization conditions of the Bishop and Oruanui rhyolites. If correct, this assertion has far-reaching implications, so a careful assessment of the Wilson et al. reasoning is warranted. Application of the Ti-in-quartz calibration as a thermobarometer in rutile-free rocks requires an estimation of TiO2 activity in the liquid ( (liquid–rutile); referenced to rutile saturation) and an independent constraint on either P or T to obtain the crystallization temperature or pressure, respectively. The foundation of Wilson et al.’s argument is that temperature estimates obtained from Fe–Ti oxide thermometry accurately reflect crystallization conditions of quartz in the two rhyolites discussed. We maintain that our experimental approach is sound, the thermodynamic basis of the Ti-in-quartz calibration is fundamentally correct, and our experimental results are robust and reproducible. We suggest that the reason Wilson et al. obtain implausible pressure estimates is because estimates for T and they used as input values for the Ti-in-quartz calibration are demonstrably too high. Numerous studies show that Fe–Ti oxide temperature estimates of some rhyolites are substantially higher than those predicted by well-constrained phase equilibria. In this reply, we show that when reasonable input values for T and (liquid–rutile) are used, pressure estimates obtained from the Ti-in-quartz calibration are well aligned with phase equilibria and essentially identical to melt inclusion volatile saturation pressures.  相似文献   

3.
The determination of soil–water characteristic curve variables, proposed by [1] provides more flexibility compared to conventional methods such as [4]. However, if the method “A” described by the authors is used, the air-entry and residual suctions would be difficult to compute, because the parameters m and n depend directly on the residual suction and vice versa, which leads to more unknowns than equations. It should be noted that the parameters of the original formula of [2] composed of the correction factor, are calculated in semi-log plot by using the neperian logarithm and not with the decimal logarithm.  相似文献   

4.
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号