首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes the application of a structural optimization approach combined with the finite element method for the optimal design of a raft–pile foundation system. The analysis takes into account the non-linear behaviour of the soil medium and the piles. For the optimization process, the sensitivity analysis is carried out using the approximate semi-analytical method while the constraint approximation is obtained from the combination of extended Bi-point and Lagrangian polynomial approximation methods. The objective function of the problem is the cost of the foundation. The design variables are the raft thickness, cross-section, length and number of piles. The maximum displacement and differential displacement are selected as the constraints. The proposed method is shown to achieve an optimum design of raft–pile foundation efficiently and accurately. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
潘健  刘利艳  王兴斌  顾太华 《岩土力学》2006,27(Z2):195-199
采用ABAQUS有限元程序中的线性扩展D-P模型对带桩筏基下的地基土进行弹塑性模拟,建立了带桩筏基系统的ABAQUS程序三维有限元模型。经比较各种桩、筏基础的内力与沉降关系计算结果,得到了带桩筏基的一些工作特性。在此基础上结合《建筑地基基础设计规范》(GB5007-2002),改进了传统的复合桩基设计方法,讨论了“三阶段”设计理念的可行性,并将其应用于工程实例。分析结果表明,改进的复合桩基设计方法和“三阶段”设计方法较常规设计方法更加经济合理。  相似文献   

3.
This paper presents the results of a parametric study in which a series of fully coupled, 3-dimensional thermo-hydro-mechanical Finite Element (FE) analyses has been conducted to investigate the effects of the thermal changes imposed by the regular performance of a GSHP system driven by energy piles on a very large piled raft. The FE simulation program has been focused mainly on the evaluation of the following crucial aspects of the energy system design: the assessment of the soil–pile–raft interaction effects during thermal loading conditions; the quantification of the influence of the thermal properties of the soil and of the geometrical layout of the energy piles on the soil–foundation system response, and the evaluation of the influence of the active pile spacing on the thermal performance of the GSHP–energy pile system. The results of the numerical simulations show that the soil–pile–raft interaction effects can be very important. In particular, the presence of a relatively rigid raft in direct contact with the soil is responsible for axial load variations in inactive piles of the same order of those experienced by the thermo-active piles, even when the latter are relatively far and temperature changes in inactive piles are small. As far as the effect of pile spacing is concerned, the numerical simulations show that placing a high number of energy piles in a large piled raft with relatively small pile spacings can lead to a significant reduction of the overall heat exchange from the piles to the soil, thus reducing the thermal efficiency of the system.  相似文献   

4.
本文采用有限元法对高层建筑上部结构—桩筏基础—地基共同作用及相互影响进行了研究。研究表明:高层建筑上部结构—桩筏基础—地基共同作用及相互影响时,基础总体沉降和差异沉降随楼层的增加呈非线性变化趋势,上部结构中存在次应力,弯矩和轴力比常规法设计偏大;随楼层的增加,桩体对荷载的分担比在减少,土体分担比在增加;随着上部结构刚度的增加,荷载向角桩、边桩集中;增加筏板厚度,能减少一定的差异沉降和基础平均沉降,从而减少上部结构的次应力,提高地基土的荷载分担比,同时筏板下桩顶反力分布更不均匀,因此需要从筏板受力,以及考虑筏下桩、土的受力来综合确定一个合理的筏板厚度,使设计安全经济;随着地基土变形模量的提高,地基土分担的上部荷载增加,桩顶反力趋向平均,筏板最大弯矩逐渐减小。桩筏基础在均匀布桩条件下呈中间大边缘小的“碟型”分布。差异沉降是由于上部结构次生应力和筏板内力产生的。通过对地基土刚度以及桩长、桩径、桩距等五种桩基刚度的调整,并分析不同刚度对基础差异沉降影响可知:改变桩长的布桩形式并结合地基土刚度调整的中心布桩形式是高层建筑桩筏基础最佳设计方案。  相似文献   

5.
Considering there is hardly any concerted effort to analyze the pile‐raft foundations under complex loads (combined with vertical loads, horizontal loads and moments), an analysis method is proposed in this paper to estimate the responses of pile‐raft foundations which are subjected to vertical loads, horizontal loads and moments in layered soils based on solutions for stresses and displacements in layered elastic half space. Pile to pile, pile to soil surface, soil surface to pile and soil surface to soil surface interactions are key ingredients for calculating the responses of pile‐raft foundations accurately. Those interactions are fully taken into account to estimate the responses of pile‐raft foundations subject to vertical loads, horizontal loads and moments in layered soils. The constraints of the raft on vertical movements, horizontal movements and rotations of the piles as well as the constraints of the raft on vertical movements and horizontal movements of the soils are considered to reflect the coupled effect on the raft. The method is verified through comparisons with the published methods and FEM. Then, the method is adopted to investigate the influence of soil stratigraphy on pile responses. The study shows that it is necessary to consider the soil non‐homogeneity when estimating the responses of pile‐raft foundations in layered soils, especially when estimating the horizontal responses of pile‐raft foundations. The horizontal loads and the moments have a significant impact on vertical responses of piles in pile‐raft foundations, while vertical loads have little influence on horizontal responses of piles in pile‐raft foundations in the cases of small deformations. The proposed method can provide a simple and useful tool for engineering design. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
王成华  刘庆晨 《岩土力学》2012,33(6):1851-1856
对土体采用Mohr-Coulomb弹塑性本构模型,用接触面单元模拟桩-土相互作用,利用ABAQUS建立桩筏基础--地基--基坑开挖三维有限元分析模型。对基坑开挖影响下的群桩基础竖向承载性状进行了分析,讨论了桩顶反力分布、桩身轴力、桩侧摩阻力以及开挖引起的桩身水平位移及其弯矩的变化规律,并进行了考虑基坑开挖与不考虑基坑开挖的群桩基础竖向承载性状的对比分析。通过研究,取得了基坑开挖对高层建筑桩筏基础影响的基本认识,这些认识对于改进桩筏基础设计理论有一定的参考意义。  相似文献   

7.
The micropiled raft (MPR) offers an efficient foundation system that combines the advantages of micropiles and piled rafts that can be used as primary foundation system or to enhance an existing raft foundation. In this paper, a calibrated and verified finite element model (FEM) with centrifuge tests was used to carry out a numerical investigation on the performance of MPR in sand. A total of 78 different cases were analyzed in this study to assess the behavior of MPR in sand taking into account a number of factors that may influence its behavior such as: the number of micropiles (MPs), the spacing to micropile diameter (S/Dmp), the raft thickness, type of loading and soil density. The outcomes of this investigation should help in understanding the effect of these factors on the MPR axial stiffness, including; differential settlement; load sharing between the MPs and the raft; and the raft bending moment. Moreover, the ability of the PDR method to evaluate the axial stiffness of a MPR for the preliminary design stage is examined. It was found that the MPR system has the ability to increase the tolerable bearing pressure by 190% compared to an isolated raft system. In addition, an adjustment factor (ωPR) for PDR method was introduced to account for the raft flexibility.  相似文献   

8.
This paper develops a method to analyze the piled raft foundation under vertical harmonic load. This method takes into account the interactions among the piles, soil, and raft. The responses of the piles and raft are formulated as a series of equations in a suitable way and that of layered soils is simulated with the use of the analytical layer‐element method. Then, according to the equilibrium and continuity conditions at the piles–soil–raft interface, solutions for the piled raft systems are obtained and further demonstrated to be correct through comparing with the existing results. Finally, some examples are given to investigate the influence of the raft, pile length‐diameter ratio, and layering on the response of the piled raft foundations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
王伟  杨敏  上官士青 《岩土力学》2015,36(Z2):178-184
桩径优化是桩筏基础以差异沉降最小化为目标的基础优化分析的重要组成部分。基于桩筏基础通用分析方法,结合遗传算法提出了包含非线性约束条件的以差异沉降控制为目标的桩筏基础桩径优化分析模型,并给出了优化分析的实施步骤。通过示例说明了桩径优化的实施情况,对比给出了优化前后基础沉降、桩基荷载分布与筏板分担比、筏板弯矩和剪力结果。最后通过参量分析研究了筏板厚度、桩基参量和土体参量对最优桩径确定的影响程度,桩长和土体特性对桩径优化结果影响显著,而桩体材料特性和筏板厚度对桩径优化结果影响不大。  相似文献   

10.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

11.
基于复合地基-上部结构相互作用的静力分析已取得一定的研究成果,但其在动力荷载作用下,特别是地震作用下的动力响应却相当匮乏。首先借助有关试验通过ABAQUS和EERA的模拟分析,验证了基于Drucker-Prager屈服准则的弹塑性模型能较好地反映土体非线性动力特性以及采用有限元与无限元耦合的方法对土体无限边界的模拟。在此基础上,针对实际问题建立了刚性桩复合地基-筏板-上部结构体系整体有限元模型,对其进行动力弹塑性时程分析,并讨论了该复合地基与桩基对地震响应的差异。深入研究了不同强度地震作用下,刚性桩复合地基的工作机制,包括桩体、褥垫层、筏板的动力响应以及上部结构的地震反应和抗震性能。结果表明,小震时褥垫层基本没有减震效果,大震时复合地基的抗震性能优于桩基。地震越强烈,减震效果越明显,但作用有限,减震系数一般在0.8以上,可为工程实践提供参考。  相似文献   

12.
当前虽然已有考虑桩筏非线性的设计,但仍无人在此基础上,考虑上部结构。因此考虑上部结构,进一步认识其与桩筏基础非线性共同作用机理,优化桩筏基础设计,具有重要的现实意义。本文以子结构法凝聚上部结构的荷载及刚度,以平面壳体单元模拟筏板,按有限层法模拟桩土之间的弹性相互作用,用广义剪切位移法模拟桩的非线性工作性状,建立了一种考虑上部结构共同作用的桩筏基础非线性分析方法,并编制了分析程序。通过实例分析,探讨了上部结构与桩筏基础非线性共同作用的机理,研究了合理布桩方式,探讨了以差异沉降为目标的优化设计的可能途径。  相似文献   

13.
黄茂松  李波 《岩土力学》2012,33(8):2388-2394
提出一种层状地基中柔性筏板-群桩共同作用分析方法,探讨筏板刚度对桩筏基础沉降的影响,并成功预测了往复荷载下桩筏基础的长期沉降。筏板刚度采用Mindlin板理论的有限单元法分析;桩-土体系的刚度矩阵中,桩顶面-桩顶面、桩顶面-土表面以及土表面-土表面的相互作用分析采用层状剪切位移法借助层状地基的Burmister位移解求得。基于层状地基中柔性筏板-群桩的沉降计算方法以及往复荷载下土体压缩模量的衰减特性得到了桩筏基础的长期沉降预测方法。与已有文献方法和离心模型试验结果的对比分析表明,柔性筏板-群桩共同作用方法得到的沉降值具有较高的精度。  相似文献   

14.
从弹性半空间Boussiuesq解出发,采用有限元法和压缩层地基模型,探索计算厚筏基础倾斜值的方法,计算厚筏基础的不均匀沉降和倾斜值,并利用工程实例进行说明,计算结果与实测结果较吻合。  相似文献   

15.
邓安福  郑冰  曾祥勇 《岩土力学》2009,30(Z2):555-559
为节约用地,山地城镇建设中有些建筑建于岩坡地基上,岩坡地基与上部建筑结构之间的共同作用分析成为山区岩土工程实践中的一个课题。基于有限元分析的数值方法,对均质岩坡上建筑边距(建筑距坡顶边缘的距离)对上部建筑结构与地基基础相互作用的影响进行了计算分析,其中边坡地基为10 m高的直立岩坡,基础为平板式筏基,建筑边距分别考虑了2、5、8 m的3种情况。研究了3种建筑边距情况下边坡地基的强度变形情况及上部框架结构、筏板基础的内力和变形情况,分析中上部结构、基础与边坡地基满足三者的受力平衡和变形协调条件。得出了相关结论,对工程实践有一定参考意义  相似文献   

16.
A piled raft foundation is a combined foundation, which is developed to utilize the load-carrying capabilities of both raft and piles. To obtain an optimum piled raft design, it is important to properly evaluate and consider the load-sharing behavior between the raft and piles, which changes according to the settlement level of the piled raft. In this study, 27 three-dimensional finite element models were analyzed to investigate the piled raft coefficient with linear and nonlinear load-settlement behaviors. The length of piles was varied between 10, 15, and 20 m. The spacing between pile centers was varied between 3D, 5D, and 7D, and the pile diameter was kept constant. The number of piles and the distance between the exterior piles and the edge of the raft were maintained at 9 and 1 m, respectively. The sand conditions varied between dense, medium, and loose. The results indicated that the piled raft coefficient increases when the load-settlement curve is linear and decreases when the load-settlement curve is nonlinear. The influence of the incremental increase in pile length on the piled raft coefficient is more pronounced in short piles than in longer piles. The raft thickness has a negligible effect on the piled raft coefficient.  相似文献   

17.
Finite element simulations of the behavior of a piled raft foundation have been carried out using a multiphase model conceived as an improved homogenization approach. According to this model, the ground reinforced by a group of piles is treated as a homogeneous continuous medium. In this approach, no specific interface elements are necessary to account for the mechanical interaction between the piles and the ground: this interaction is described by means of two scalar parameters, one stiffness parameter and one which can easily be derived from the maximum ground‐pile friction. The implementation of the model into a finite element code provides an efficient tool for the analysis of the influence of the pile number or length on the settlement and bearing capacity of a square piled raft foundation and of the way the total applied load is shared between the raft and the piles. Results are compared with a standard 3D finite element analysis. The comparison highlights the fact that the proposed approach remains to be improved to account for tip resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A piled raft foundation comprises both piles and a pile cap that itself transmits load directly to the ground. The aim of such a foundation is to reduce the number of piles compared with a more conventional piled foundation where the bearing effect of the pile cap, or raft, is ignored. This paper describes a ‘hybrid’ approach for the analysis of piled raft foundations, based on a load transfer treatment of individual piles, together with elastic interaction between different piles and with the raft. The numerical analysis is used to evaluate a simple approximate method of estimating the overall response of the foundation from the response of the component parts. The method leads to estimates of the overall foundation stiffness, the proportion of load carried by the pile group and the raft, and an initial assessment of differential settlements. Parametric studies are presented showing the effect of factors such as raft stiffness and pile spacing, length and stiffness, and a worked example is included demonstrating the accuracy of the approximate design approach.  相似文献   

19.
The finite element (FE) simulation of large‐scale soil–structure interaction problems (e.g. piled‐raft, tunnelling, and excavation) typically involves structural and geomaterials with significant differences in stiffness and permeability. The symmetric quasi‐minimal residual solver coupled with recently developed generalized Jacobi, modified symmetric successive over‐relaxation (MSSOR), or standard incomplete LU factorization (ILU) preconditioners can be ineffective for this class of problems. Inexact block diagonal preconditioners that are inexpensive approximations of the theoretical form are systematically evaluated for mitigating the coupled adverse effects because of such heterogeneous material properties (stiffness and permeability) and because of the percentage of the structural component in the system in piled‐raft foundations. Such mitigation led the proposed preconditioners to offer a significant saving in runtime (up to more than 10 times faster) in comparison with generalized Jacobi, modified symmetric successive over‐relaxation, and ILU preconditioners in simulating piled‐raft foundations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
对101层上海环球金融中心桩筏基础性状的预测   总被引:2,自引:0,他引:2  
龚剑  赵锡宏 《岩土力学》2007,28(8):1695-1699
根据上海金茂大厦88层的成功建筑经验,试图预测101层上海环球金融中心桩筏基础性状,例如桩的承载力和及其随时间的增加、桩筏的荷载分担、筏厚、沉降和桩筏基础的设计理论等。最后,对两幢大楼桩筏基础性状加以评论,可供研究上海超高层建筑的超长桩基的设计理论的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号