首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bidirectional reflectance distribution functions (BRDF) seek to represent surface reflectance anisotropy resulting from surface physical structure and changes in a satellite sensor’s view and solar illumination angles. NASA’s MODerate resolution imaging spectroradiometer (MODIS) is a wide field of view sensor that generates observations over a large range of view angles. Based on MODIS observations, a BRDF product and several sub-products have been developed by MODIS science teams, i.e. the MCD43 product suite. Variations in pixels’ ground instantaneous field of view (GIFOV), i.e. the size of a pixel’s footprint on the ground, is a well known effect associated with wide field of view sensors such as MODIS, but is not specifically considered in the MODIS BRDF algorithm nor has research been undertaken into its effects on MODIS BRDF modelling. This paper introduces two metrics to examine the relationship between reflectance variations associated with changes in MODIS pixels’ GIFOV and the MODIS BRDF (MCD43) product. These metrics are applied to four different study areas and epochs across the Australian continent. The two metrics are shown to be well correlated (mean correlation coefficient of 0.81 for the four study areas); suggesting that variations in pixels’ GIFOV are a consistent, non-random source of variance in MODIS BRDF modelling. The results contained in this paper suggest that all downstream products which include MODIS BRDF processing in their derivation and results directly based on MODIS BRDF processing may need to be reassessed.  相似文献   

2.
The aim of this study is to estimate leaf area index (LAI) in different type of plants using vegetation indices (VIs) and neural network algorithms retrieved from MODIS data. Four VI were calculated, and neural networks were built up based on MODIS surface reflectance products. Among the tested VIs, normalized difference vegetation index (NDVI) and chlorophyll index (CI) appeared to be the best candidate indices in estimating LAI across sites with different vegetation types. The models having the highest accuracy were CI for grassland and deciduous broad leaf forest with determination coefficients (R-square above 0.70, and NDVI for crop R-square?=?0.78). Neural network showed better results than VI methods except in grassland sites. The added VI information showed no significant improvement of model accuracy for the neural networks in most sites.  相似文献   

3.
Clumping index quantifies the level of foliage aggregation, relative to a random distribution, and is a key structural parameter of plant canopies and is widely used in ecological and meteorological models. In this study, the inter- and intra-annual variations in clumping index values, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product, are investigated at six forest sites, including conifer forests, a mixed deciduous forest and an oak-savanna system. We find that the clumping index displays large seasonal variation, particularly for the deciduous sites, with the magnitude in clumping index values at each site comparable on an intra-annual basis, and the seasonality of clumping index well captured after noise removal. For broadleaved and mixed forest sites, minimum clumping index values are usually found during the season when leaf area index is at its maximum. The magnitude of MODIS clumping index is validated by ground data collected from 17 sites. Validation shows that the MODIS clumping index can explain 75% of variance in measured values (bias = 0.03 and rmse = 0.08), although with a narrower amplitude in variation. This study suggests that the MODIS BRDF product has the potential to produce good seasonal trajectories of clumping index values, but with an improved estimation of background reflectance.  相似文献   

4.
Remote sensing and climate digital products have become increasingly available in recent years. Access to these products has favored a variety of Digital Earth studies, such as the analysis of the impact of global warming over different biomes. The study of the Amazon forest response to drought has recently received particular attention from the scientific community due to the occurrence of extreme droughts and anomalous warming over the last decade. This paper focuses on the differences observed between surface thermal anomalies obtained from remote sensing moderate resolution imaging spectroradiometer (MODIS) and climatic (ERA-Interim) monthly products over the Amazon forest. With a few exceptions, results show that the spatial pattern of standardized anomalies is similar for both products. In terms of absolute anomalies, the differences between the two products show a bias near to zero with a standard deviation of around 0.2?K, although the differences can be up to 1?K over particular regions and months. Despite this general agreement, the proper filtering of MODIS daily values in order to construct a new monthly product showed a dramatic reduction in the number of reliable pixels during the rainy season, while for the dry season this reduction is only seen in Northern Amazonia.  相似文献   

5.
ABSTRACT

The temporal resolution of vegetation indices (VIs) determines the details of seasonal variation in vegetation dynamics observed by remote sensing, but little has been known about how the temporal resolution of VIs affects the retrieval of land surface phenology (LSP) of grasslands. This study evaluated the impact of temporal resolution of MODIS NDVI, EVI, and per-pixel green chromatic coordinate (GCCpp) on the quality and accuracy of the estimated LSP metrics of prairie grasslands. The near-surface PheonoCam phenology data for grasslands centered over Lethbridge PhenoCam grassland site were used as the validation datasets due to the lack of in situ observations for grasslands in the Prairie Ecozone. MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data from 2001 to 2017 were used to compute the time series of daily reference and to simulate 2–32 day MODIS VIs. The daily reference and simulated multi-day time series were fitted with the double logistic model, and the LSP metrics were then retrieved from the modeled daily time series separately. Comparison within satellite-based estimates showed no significant difference in the phenological metrics derived from daily reference and multi-day VIs resampled at a time step less than 18 days. Moreover, a significant decline in the ability of multi-day VIs to predict detailed temporal dynamics of daily reference VIs was revealed as the temporal resolution increased. Besides, there were a variety of trends for the onset of phenological transitions as the temporal resolution of VIs changed from 1 to 32 days. Comparison with PhenoCam phenology data presented small and insignificant differences in the mean bias error (MBE) and the mean absolute error (MAE) of grassland phenological metrics derived from daily, 8-, 10-, 14-, and 16-day MODIS VIs. Overall, this study suggested that the MODIS VIs resampled at a time step less than 18 days are favorable for the detection of grassland phenological transitions and detailed seasonal dynamics in the Prairie Ecozone.  相似文献   

6.
New optical and microwave integrated vegetation indices (VIs) were designed based on observations from both field experiments and satellite (HJ-1 and RADARSAT-2) data. It was found that these VIs perform better in estimating the structure parameters of maize, such as Leaf Area Index (LAI), height and biomass, than the original ones. This investigation focused on the difference of interaction between the multispectral reflectance and microwave backscattering signatures with the maize growth variables. Because the maize was near the heading stage with large vegetation coverage in the experiment, the reflectance of the near-infrared band of HJ-1 was much less sensitive to the structure variables than that of the visible-light band. Thus, the optical VIs formulated using those bands were saturated to estimate the structure parameters. With respect to the RADARSAT-2 data, there was a relatively strong relationship between the HV cross-polarization and the volume scattering of the maize, which was mostly determined by the crown structure. The modified VIs were designed using both the VIs of HJ-1 and the HV cross-polarization of RADARSAT-2 to overcome the saturation limitation. The validation showed that this integrated method of determining VIs is a good alternative to that using only the optical or microwave observation.  相似文献   

7.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled.  相似文献   

8.
陈拉  黄敬峰  王秀珍 《遥感学报》2008,12(1):143-151
本研究利用水稻冠层高光谱数据,模拟NOAA-AVHRR,Terra-MODIS和Landsat-TM的可见光波段反射率数据,计算各传感器的多种植被指数(NDVI,RVI,EVI,GNDVI,GRVI和Red-edge RVI),比较植被指数模型对水稻LAI的估测精度,分析不同植被指数对LAI变化的敏感性.相对于红波段植被指数,红边比值植被指数(Red-edge RVI)和绿波段指数GRVI与LAI有更好的线性相关关系,而GNDVI和LAI呈现更好的对数相关关系.MODIS的Red-edge RVI指数不仅模型拟合的精度最高,还有独立数据验证的估测精度也最高,而且它的验证精度较拟合精度下降幅度最小;其次是绿波段构建的GNDVI和GRVI植被指数的估测精度,再次是NDVI和EVI的估测精度,而RVI的估测精度最差.敏感性分析发现,13个植被指数对水稻LAI的估测能力都随着LAI的增加而下降,但归一化类植被指数和比值类植被指数对LAI变化反应的差异明显,归一化类植被指数在LAI较低时(LAI<1.5)对LAI变化的反应开始非常敏感,但迅速下降,而比值类植被指数在LAI较低时,明显小于归一化类植被指数,之后随着LAI的增大(LAI>1.5)比值类植被指数对LAI的变化敏感性,则明显高于归一化类植被指数.Red-edge RVI和绿波段指数GRVI和LAI不仅表现了很好的线性相关关系,而且在LAI大于2.9左右保持较高的敏感性.  相似文献   

9.
当前对MODIS LAI产品的真实性检验工作中,更多的是关注遥感产品在数值与趋势上与地表真值的一致性程度,很少工作能够全面分析遥感LAI产品偏差来源以及不同来源的偏差对全局偏差的贡献率。本文在对MODIS LAI产品进行真实性检验基础之上,进一步分析了MODIS LAI产品偏差来源。将遥感产品真实性检验偏差来源分解为反演模型,反射率数据和冠层聚集效应3个方面,并定量分析各个偏差源对真实性检验结果的影响。以河北省怀来玉米为研究对象,结合实测LAI数据和Landsat 8 OLI(Operational Land Imager)数据建立NDVI LAI半经验模型,得到LAI参考数据,据此对MODIS LAI产品进行真实性检验及偏差分析。研究表明,该区域MODIS LAI产品存在明显的低估现象,参考数据和MODIS LAI数据均值分别为3.53 m2/m2和2.33 m2/m2,MODIS产品低估为34.14%。在各个偏差因素中,反射率数据的差异对结果影响最大,即MODIS地表反射率数据与Landsat 8 OLI地表反射率数据的差异造成的偏差占总偏差的57.50%;聚集效应的影响次之,占总偏差的28.33%;模型差异对结果的影响最小,占总偏差的14.17%。本研究对遥感产品真实性检验及其不确定性分析具有一定的借鉴意义。  相似文献   

10.
Burnings, which cause major changes to the environment, can be effectively monitored via satellite data, regarding both the identification of active fires and the estimation of burned areas. Among the many orbital sensors suitable for mapping burned areas on global and regional scales, the moderate resolution imaging spectroradiometer (MODIS), on board the Terra and Aqua platforms, has been the most widely utilized. In this study, the performance of the MODIS MCD45A1 burned area product was thoroughly evaluated in the Brazilian savanna, the second largest biome in South America and a global biodiversity hotspot, characterized by a conspicuous climatic seasonality and the systematic occurrence of natural and anthropogenic fires. Overall, September MCD45A1 polygons (2000–2012) compared well to the Landsat-based reference mapping (r2 = 0.92) and were closely accompanied, on a monthly basis, by MOD14 and MYD14 hotspots (r2 = 0.89), although large omissions errors, linked to landscape patterns, structures, and overall conditions depicted in each reference image, were observed. In spite of its spatial and temporal limitations, the MCD45A1 product proved instrumental for mapping and understanding fire behavior and impacts on the Cerrado landscapes.  相似文献   

11.
基于MODIS数据的中国陆面制图:方法软件和数据产品   总被引:1,自引:0,他引:1  
本文介绍一个自动处理MODIS 1B数据并生产覆盖全中国陆面产品的软件系统。该算法改进了LAI(MOD15),土地覆被分类(MOD12),云检测(MOD35),陆面反射率(MOD09)和气溶胶(MOD04)产品。这些算法的输入数据都是本地获取的参数,能够有效降低其带来的不确定性。产生的部分新产品是NASA标准产品中没有的,包括森林火烧迹地和PAR。数据处理系统运行于中国科学院资源与环境数据中心。  相似文献   

12.
The validation study of leaf area index (LAI) products over rugged surfaces not only gives additional insights into data quality of LAI products, but deepens understanding of uncertainties regarding land surface process models depended on LAI data over complex terrain. This study evaluated the performance of MODIS and GLASS LAI products using the intercomparison and direct validation methods over southwestern China. The spatio-temporal consistencies, such as the spatial distributions of LAI products and their statistical relationship as a function of topographic indices, time, and vegetation types, respectively, were investigated through intercomparison between MODIS and GLASS products during the period 2011–2013. The accuracies and change ranges of these two products were evaluated against available LAI reference maps over 10 sampling regions which standed for typical vegetation types and topographic gradients in southwestern China.The results show that GLASS LAI exhibits higher percentage of good quality data (i.e. successful retrievals) and smoother temporal profiles than MODIS LAI. The percentage of successful retrievals for MODIS and GLASS is vulnerable to topographic indices, especially to relief amplitude. Besides, the two products do not capture seasonal dynamics of crop, especially in spring over heterogeneously hilly regions. The yearly mean LAI differences between MODIS and GLASS are within ±0.5 for 64.70% of the total retrieval pixels over southwestern China. The spatial distribution of mean differences and temporal profiles of these two products are inclined to be dominated by vegetation types other than topographic indices. The spatial and temporal consistency of these two products is good over most area of grasses/cereal crops; however, it is poor for evergreen broadleaf forest. MODIS presents more reliable change range of LAI than GLASS through comparison with fine resolution reference maps over most of sampling regions. The accuracies of direct validation are obtained for GLASS LAI (r = 0.35, RMSE = 1.72, mean bias = −0.71) and MODIS LAI (r = 0.49, RMSE = 1.75, mean bias = −0.67). GLASS performs similarly to MODIS, but may be marginally inferior to MODIS based on our direct validation results. The validation experience demonstrates the necessity and importance of topographic consideration for LAI estimation over mountain areas. Considerable attention will be paid to the improvements of surface reflectance, retrieval algorithm and land cover types so as to enhance the quality of LAI products in topographically complex terrain.  相似文献   

13.
Satellite derived vegetation vigour has been successfully used for various environmental modeling since 1972. However, extraction of reliable annual growth information about natural vegetation (i.e., phenology) has been of recent interest due to their important role in many global models and free availability of time-series satellite data. In this study, usability of Moderate Resolution Imaging Spectro-radiometer (MODIS) and Global Inventory Modelling and Mapping Studies (GIMMS) based products in extracting phenology information about evergreen, semi-evergreen, moist deciduous and dry deciduous vegetation in India was explored. The MODIS NDVI and EVI time-series data (MOD13C1: 5.6 km spatial resolution with 16 day temporal resolution—2001 to 2010) and GIMMS NDVI time-series data(8 km spatial resolution with 15 day temporal resolution—2000 to 2006) were used. These three differently derived vegetation indices were analysed to extract and understand the vegetative growth rhythm over different regions of India. Algorithm was developed to derive onset of greenness and end of senescence automatically. The comparative analysis about differences in the results from these products was carried out. Due to dominant noise in the values of NDVI from GIMMS and MODIS during monsoon period the phenology rhythm were wrongly depicted, especially for evergreen and semi-evergreen vegetation in India. Hence, care is needed before using these data sets for understanding vegetative dynamics, biomass cestimation and carbon studies. MODIS EVI based results were truthful and comparable to ground reality. The study reveals spatio-temporal patterns of phenology, rate of greening, rate of senescence, and differences in results from these three products.  相似文献   

14.
雷晨阳  孟祥超  邵枫 《遥感学报》2021,25(3):791-802
遥感影像时—空融合可集成多源数据高空间分辨率和高时间分辨率互补优势,生成时间连续的高空间分辨率影像,在遥感影像的动态监测与时序分析等方面具有重要应用价值.然而,现有多数研究往往基于单一数据产品对时—空融合算法进行评价,而在实际生产应用中,需要验证算法在多种遥感产品数据的融合表现;此外,目前研究大多基于“单点时刻”进行评...  相似文献   

15.
The vegetation index is derived using many remote sensing sensors. Vegetation Index is extensively used and remote sensing has become the primary data source. Number of vegetation indices (VIs) have been developed during the past decades in order to assess the state of vegetation qualitatively and quantitatively. Analysis of vegetation indices has been carried out by many investigators scaling from regional level to global level using the remote sensing data of varying spatial, temporal and radiometric resolutions. There are as many as 14 VIs in use. Globally operational algorithms for generation of NDVI have utilized digital counts, at sensor radiances, ‘normalized’ reflectance (top of the atmosphere), and more recently, partially atmospheric corrected (ozone absorption and molecular scattering) reflectance. Presently NDVI and EVI are standard MODIS data products which are widely used by the scientific community for environmental studies. The OCM sensor in Oceansat 2 is designed for ocean colour studies. The OCM sensor has been used for studying ocean phytoplankton, suspended sediments and aerosol optical depth by many investigators. In addition to its capability of studying the ocean surface, OCM sensor has also the potential to study the land surface features. In a past EVI has been retrieved using OCM sensor of Oceansat 1. However, there is slight change in the band width of Oceansat 2—OCM sensor compared with OCM of Oceansat 1 sensor. In the present paper an attempt has been made to derive EVI using Oceansat 2 OCM sensor and the results have been compared with MODIS data. The enhanced vegetation index (EVI) is calculated using the reflectance values obtained after removing molecular scattering and ozone absorption component from the total radiance detected by the sensor. The band-2, Band-3, band-6 and band-8 corresponding to Blue, Red and Infrared part of the visible spectrum have been used to determine EVI. The result shows that Oceansat 2 derived EVI and MODIS derived EVI are well correlated.  相似文献   

16.
利用BRDF原型和单方向反射率数据估算地表反照率   总被引:2,自引:2,他引:0  
地表反照率是影响地表能量收支平衡的决定性参数之一,精确反演地表反照率需要考虑地表各向异性反射特征。本文尝试以双向反射分布函数BRDF原型为地表各向异性反射的先验知识,通过单方向反射率反演地表反照率。首先根据地面实测及MODIS多角度反射率数据对反演方法进行分析和精度评价,然后借助MODIS BRDF产品统计出研究区的主导BRDF原型,并联合环境一号卫星(HJ-1)单方向反射率数据反演30 m地表反照率,最终将结果与地表实测数据进行比较。结果表明:BRDF原型对BRDF的变化进行了约束,且能够适用于几十米尺度的遥感数据反照率的反演;不同级别的各向异性反射特征的分布是不均一的,借助于主导BRDF原型能够使大部分样本的地表反照率满足精度要求;利用研究区MODIS BRDF产品统计得到的主导BRDF原型为先验知识,通过HJ-1数据反演得到的地表反照率与地表实测反照率有较高的一致性,而朗伯假定条件下的反照率高于实测结果。本文算法简单高效,可为产生全国范围的中高分辨卫星反照率产品提供有价值的算法参考。  相似文献   

17.
Reduced availability of plant nutrients such as nitrogen (N) and phosphorous (P) has detrimental effects on plant growth. Plant N:P ratio, calculated as the quotient of N and P concentrations, is an ecological indicator of relative N and P limitation. Remote sensing has already been widely used to detect plant traits in foliage, particularly canopy N and P concentrations and could be used to detect canopy N:P faster and at lower cost than traditional destructive methods. Despite the potential opportunity of applying remote sensing techniques to detect canopy N:P, studies investigating canopy N:P remote detection are scarce. In this study, we examined if vegetation indices developed for canopy N or P detection can also be used for canopy N:P detection. Using in situ spectrometry, we measured the reflectance of a common grass species, Yorkshire fog (Holcus lanatus L.), grown under different nutrient ratios and levels. We calculated 60 VIs found in literature and compared them to optimized VIs developed specifically for this study. The VIs were calculated using both the original narrow band spectra and the spectra resampled to the band properties of six satellite sensors (MSI – Sentinel 2, OLCI – Sentinel 3, MODIS – Terra/Aqua, OLI – Landsat 8, WorldView 4 and RapidEye) to investigate the influence of bandwidths and band positions. The results showed that canopy N:P was significantly related to both existing VIs (r2 = 0.16 - 0.48) and optimized VIs (r2 = 0.59 – 0.72) with correlations similar to what was observed for canopy N or canopy P. Existing VIs calculated with MSI and OLI sensors bands showed higher correlation with canopy N:P compared to the other sensors while the correlation with optimized VIs was not affected by the differences in sensors’ bands. This study might lead to future practical applications using in situ reflectance measurements to sense canopy N:P in grasslands.  相似文献   

18.
A Landsat surface reflectance dataset for North America, 1990-2000   总被引:7,自引:0,他引:7  
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center has processed and released 2100 Landsat Thematic Mapper and Enhanced Thematic Mapper Plus surface reflectance scenes, providing 30-m resolution wall-to-wall reflectance coverage for North America for epochs centered on 1990 and 2000. This dataset can support decadal assessments of environmental and land-cover change, production of reflectance-based biophysical products, and applications that merge reflectance data from multiple sensors [e.g., the Advanced Spaceborne Thermal Emission and Reflection Radiometer, Multiangle Imaging Spectroradiometer, Moderate Resolution Imaging Spectroradiometer (MODIS)]. The raw imagery was obtained from the orthorectified Landsat GeoCover dataset, purchased by NASA from the Earth Satellite Corporation. Through the LEDAPS project, these data were calibrated, converted to top-of-atmosphere reflectance, and then atmospherically corrected using the MODIS/6S methodology. Initial comparisons with ground-based optical thickness measurements and simultaneously acquired MODIS imagery indicate comparable uncertainty in Landsat surface reflectance compared to the standard MODIS reflectance product (the greater of 0.5% absolute reflectance or 5% of the recorded reflectance value). The rapid automated nature of the processing stream also paves the way for routine high-level products from future Landsat sensors.  相似文献   

19.
We used RapidEye and Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data to study terrain illumination effects on 3 vegetation indices (VIs) and 11 phenological metrics over seasonal deciduous forests in southern Brazil. We applied TIMESAT for the analysis of the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) derived from the MOD13Q1 product to calculate phenological metrics. We related the VIs with the cosine of the incidence angle i (Cos i) and inspected percentage changes in VIs before and after topographic C-correction. The results showed that the EVI was more sensitive to seasonal changes in canopy biophysical attributes than the NDVI and Red-Edge NDVI, as indicated by analysis of non-topographically corrected RapidEye images from the summer and winter. On the other hand, the EVI was more sensitive to terrain illumination, presenting higher correlation coefficients with Cos i that decreased with reduction in the canopy background L factor. After C-correction, the RapidEye Red-Edge NDVI, NDVI, and EVI decreased 2%, 1%, and 13% over sunlit surfaces and increased up to 5%, 14%, and 89% over shaded surfaces, respectively. The EVI-related phenological metrics were also much more affected by topographic effects than the NDVI-derived metrics. From the set of 11 metrics, the 2 that described the period of lower photosynthetic activity and seasonal VI amplitude presented the largest correlation coefficients with Cos i. The results showed that terrain illumination is a factor of spectral variability in the seasonal analysis of phenological metrics, especially for VIs that are not spectrally normalized.  相似文献   

20.
马培培  李静  柳钦火  何彬彬  赵静 《遥感学报》2019,23(6):1232-1252
对多源遥感数据协同生产的2010年—2015年中国区域1 km空间分辨率5天合成的MuSyQ(Multi-source data Synergized Quantitative remote sensing production system)叶面积指数LAI产品进行验证。参考现有的LAI产品(MODIS c5,GLASS LAI)和中国生态系统研究网络部分农田和森林站点可用的LAI地面测量数据,从时空连续性、时空一致性、精度和准确性等方面对中国区域的MuSyQ LAI产品进行定性和定量分析与评价。结果表明:(1) MuSyQ LAI产品在保证精度优于MODIS产品的情况下,时间分辨率和时空连续性均有提高。MuSyQ LAI与其他LAI产品(MODIS c5,GLASS LAI)在整体上有很好的一致性(RMSE=1.0,RMSE=0.81),但对常绿阔叶林高值处的描述不稳定;(2) 与LAI地面测量数据相比,MuSyQ LAI产品与地面参考图对比结果较好(最高相关性(R2=0.54)和较低总体误差(RMSE=0.96)),其在阔叶作物生长季高值处有些许低估且在某些阔叶林站点有些高估。整体上,MuSyQ LAI产品呈现出较高的精度,可靠的空间分布和连续稳定的时间分布,且对森林LAI的描述具有更可靠的动态范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号