首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Developing spectral models of soil properties is an important frontier in remote sensing and soil science. Several studies have focused on modeling soil properties such as total pools of soil organic matter and carbon in bare soils. We extended this effort to model soil parameters in areas densely covered with coastal vegetation. Moreover, we investigated soil properties indicative of soil functions such as nutrient and organic matter turnover and storage. These properties include the partitioning of mineral and organic soil between particulate (>53 μm) and fine size classes, and the partitioning of soil carbon and nitrogen pools between stable and labile fractions. Soil samples were obtained from Avicennia germinans mangrove forest and Juncus roemerianus salt marsh plots on the west coast of central Florida. Spectra corresponding to field plot locations from Hyperion hyperspectral image were extracted and analyzed. The spectral information was regressed against the soil variables to determine the best single bands and optimal band combinations for the simple ratio (SR) and normalized difference index (NDI) indices. The regression analysis yielded levels of correlation for soil variables with R2 values ranging from 0.21 to 0.47 for best individual bands, 0.28 to 0.81 for two-band indices, and 0.53 to 0.96 for partial least-squares (PLS) regressions for the Hyperion image data. Spectral models using Hyperion data adequately (RPD > 1.4) predicted particulate organic matter (POM), silt + clay, labile carbon (C), and labile nitrogen (N) (where RPD = ratio of standard deviation to root mean square error of cross-validation [RMSECV]). The SR (0.53 μm, 2.11 μm) model of labile N with R2 = 0.81, RMSECV= 0.28, and RPD = 1.94 produced the best results in this study. Our results provide optimism that remote-sensing spectral models can successfully predict soil properties indicative of ecosystem nutrient and organic matter turnover and storage, and do so in areas with dense canopy cover.  相似文献   

2.
The retrieval of canopy biophysical variables is known to be affected by confounding factors such as plant type and background reflectance. The effects of soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) from hyperspectral data were assessed in this study. In situ measurements of LAI were related to reflectances in the red and near-infrared and also to five widely used spectral vegetation indices (VIs). The study confirmed that the spectral contrast between leaves and soil background determines the strength of the LAI–reflectance relationship. It was shown that within a given vegetation species, the optimum spectral regions for LAI estimation were similar across the investigated VIs, indicating that the various VIs are basically summarizing the same spectral information for a given vegetation species. Cross-validated results revealed that, narrow-band PVI was less influenced by soil background effects (0.15 ≤ RMSEcv ≤ 0.56). The results suggest that, when using remote sensing VIs for LAI estimation, not only is the choice of VI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using hyperspectral imagery for large-scale mapping of vegetation biophysical variables.  相似文献   

3.
Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS – Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.  相似文献   

4.
Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg−1, 1.96 and 0.73, which is better than 341.88 mg kg−1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg−1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg−1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.  相似文献   

5.
Remote sensing allows monitoring heavy metal pollution in crops for agricultural production and food security. This paper presents an approach to wavelet-fractal analysis for exploring a set of sensitive spectral parameters to monitor the heavy metal pollution levels in rice crops from hyperspectral reflectance data. Hyperspectral and biochemical data were collected from three study farms in Changchun, Jilin Province, China. Our study explored the fractal dimension of reflectance with wavelet transform (FDWT) that demonstrated a better performance than other existing methods. Our results obtained in this study show that the red edge position (REP) was the most sensitive indicator for monitoring the heavy metal pollution levels in rice crops among common indices. As compared with REP, the FDWT is more sensitive to biochemical composition, namely with respect to chlorophyll concentrations, N, Cu and Cd. The established linear models showed a correlation coefficient (R2) above 0.70, model efficiency (ME) above 0.65 and a root mean square error (RMSE) below 3.5. Minimum FDWT values occurred in rice with Level II pollution followed by Level I pollution, and finally the safe level. This study suggests that wavelet transform is well suited as a spectral analysis method to eliminate noise and amplify the stress information from heavy metals. The wavelet transform in conjunction with fractal analysis is promising for detecting heavy metal-induced stress in rice crops.  相似文献   

6.
Soil salinization is a worldwide environmental problem with severe economic and social consequences. In this paper, estimating the soil salinity of Pingluo County, China by a partial least squares regression (PLSR) predictive model was carried out using QuickBird data and soil reflectance spectra. At first, a relationship between the sensitive bands of soil salinity acquired from measured reflectance spectra and the spectral coverage of seven commonly used optical sensors was analyzed. Secondly, the potentiality of QuickBird data in estimating soil salinity by analyzing the correlations between the measured reflectance spectra and reflectance spectra derived from QuickBird data and analyzing the contributions of each band of QuickBird data to soil salinity estimation Finally, a PLSR predictive model of soil salinity was developed using reflectance spectra from QuickBird data and eight spectral indices derived from QuickBird data. The results indicated that the sensitive bands covered several bands of each optical sensor and these sensors can be used for soil salinity estimation. The result of estimation model showed that an accurate prediction of soil salinity can be made based on the PLSR method (R2 = 0.992, RMSE = 0.195). The PLSR model's performance was better than that of the stepwise multiple regression (SMR) method. The results also indicated that using spectral indices such as intensity within spectral bands (Int1, Int2), soil salinity indices (SI1, SI2, SI3), the brightness index (BI), the normalized difference vegetation index (NDVI) and the ratio vegetation index (RVI) as independent model variables can help to increase the accuracy of soil salinity mapping. The NDVI and RVI can help to reduce the influences of vegetation cover and soil moisture on prediction accuracy. The method developed in this paper can be applied in other arid and semi-arid areas, such as western China.  相似文献   

7.
Clay minerals play a crucial role in the processability of oil sands ores and in the management of tailings. An increase in fine content generally leads to a decrease in both bitumen recovery performance and tailings settling rate. It is thus important to identify clay types and their abundance in oil sands ores and tailings. This study made use of oil sands samples characterized for quantitative mineralogy by x-ray diffraction, to gain an understanding of changes in the reflectance spectra of oil sands. The sample suite included bitumen-removed oil sands ore samples and their different fine size fractions. Spectral metrics applicable to the prediction of quartz and clay contents in oil sands were then derived with a focus on metrics correlating with sample content in total 2:1 clays (total of illite and illite-smectite) and kaolinite. Metrics in the shortwave infrared (SWIR) and longwave infrared (LWIR) were found to correlate with mineral contents. The best predictions of clays and quartz were achieved using LWIR metrics (R2 > 0.89). Results also demonstrated the applicability of LWIR metrics in the prediction of kaolinite and total 2:1 clays.  相似文献   

8.
Soil erodibility values are best estimated from long-term direct measurements on runoff-plots; however, in lack of field tests, these values can be estimated using relationships based on physico-chemical soil properties. The study objective was to assess the erodibility and its correlation with soil properties. The average erodibility value was estimated 0.043 t ha h ha?1 MJ?1 mm?1. The areas with heavy textured soil and low organic matter content had the lowest values of erodibility. The erodibility decreases as the sand content increases, whereas silt showed a positive correlation. The erodibility factors and its relation to soil properties were evaluated using multiple regression analysis. Results revealed that sand and organic matter content of soil combinedly explained 78% of variation. Altitudinal increases also seem to affect the soil texture. This study has demonstrated that soil properties and erodibility values can be used as assistance for soil conservation practices and modelling of landscape processes.  相似文献   

9.
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question “what is the prospect of using independent reference reflectance spectra for image classification”, while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of “non-existence of characteristic reflectance spectral signatures for vegetation”, results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.  相似文献   

10.
In geological imaging spectrometry (i.e., hyperspectral remote sensing), surface compositional information (e.g., mineralogy and subsequently chemistry) is obtained by statistical comparison (by means of spectral matching algorithms) of known field- or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been given to comparison of the performance of the various spectral matching algorithms. Four spectral measures are presented: three that calculate the angle (spectral angle measure, SAM), the vector distance (Euclidean distance measure, ED) or the vector cross-correlation (spectral correlation measure, SCM), between a known reference and unknown target spectrum and a fourth measure that measures the discrepancy of probability distributions between two pixel vectors (the spectral information divergence, SID). The performance of these spectral similarity measures is compared using synthetic hyperspectral and real (i.e., Airborne Visible Infrared Imaging Spectrometer, AVIRIS) hyperspectral data of a (artificial or real) hydrothermal alteration system characterised by the minerals alunite, kaolinite, montmorillonite and quartz. Two statistics are used to assess the performance of the spectral similarity measures: the probability of spectral discrimination (PSD) and the power of spectral discrimination (PWSD). The first relates to the ability of the selected set of spectral endmembers to map a target spectrum, whereas the second expresses the capability of a spectral measure to separate two classes relative to a reference class. Analysis of the synthetic data set (i.e., simulated alteration zones with crisp boundaries at 1–2 nm spectral resolution) shows that (1) the SID outperforms the classical empirical spectral matching techniques (SAM, SCM and ED), (2) that SCM (SID, SAM and ED do not) exploits the overall shape of the reflectance curve and hence its outcomes are (positively and negatively) affected by the spectral range selected, (3) SAM and ED give nearly similar results and (4) for the same reason as in (2), the SCM is also more sensitive (again in positive and negative sense) to the spectral noise added. Results from the study of AVIRIS data show that SAM yields more spectral confusion (i.e., class overlap) than SID and SCM. In turn, SID is more effective in mapping the four target minerals than SCM as it clearly outperforms SCM when the target mineral coincides with the mineral phase on the ground.  相似文献   

11.
Optimizing nitrogen (N) fertilization in crop production by in-season measurements of crop N status may improve fertilizer N use efficiency. Hyperspectral measurements may be used to assess crop N status by estimating leaf chlorophyll content. This study evaluated the ability of the PROSAIL canopy-level reflectance model to predict leaf chlorophyll content. Trials were conducted with two potato cultivars under different N fertility rates (0–300 kg N ha−1). Canopy reflectance, leaf area index (LAI) and leaf chlorophyll and N contents were measured. The PROSAIL model was able to predict leaf chlorophyll content with reasonable accuracy later in the growing season. The low estimation accuracy earlier in the growing season could be due to model sensitivity to non-homogenous canopy architecture and soil background interference before full canopy closure. Canopy chlorophyll content (leaf chlorophyll content × LAI) was predicted less accurately than leaf chlrophyll content due to the low estimation accuracy of LAI for values higher than 4.5.  相似文献   

12.
Most studies have the achieved rapid and accurate determination of soil organic carbon (SOC) using laboratory spectroscopy; however, it remains difficult to map the spatial distribution of SOC. To predict and map SOC at a regional scale, we obtained fourteen hyperspectral images from the Gaofen-5 (GF-5) satellite and decomposed and reconstructed the original reflectance (OR) and the first derivative reflectance (FDR) using discrete wavelet transform (DWT) at different scales. At these different scales, as inputs, we selected the 3 optimal bands with the highest weight coefficient using principal component analysis and chose the normalized difference index (NDI), ratio index (RI) and difference index (DI) with the strongest correlation with the SOC content using a contour map method. These inputs were then used to build regional-scale SOC prediction models using random forest (RF), support vector machine (SVM) and back-propagation neural network (BPNN) algorithms. The results indicated that: 1) at a low decomposition scale, DWT can effectively eliminate the noise in satellite hyperspectral data, and the FDR combined with DWT can improve the SOC prediction accuracy significantly; 2) the method of selecting inputs using principal component analysis and a contour map can eliminate the redundancy of hyperspectral data while retaining the physical meaning of the inputs. For the model with the highest prediction accuracy, the inputs were all derived from the wavelength range of SOC variations; 3) the differences in prediction accuracy among the different prediction models are small; and 4) the SOC prediction accuracy using hyperspectral satellite data is greatly improved compared with that of previous SOC prediction studies using multispectral satellite data. This study provides a highly robust and accurate method for predicting and mapping regional SOC contents.  相似文献   

13.
The Normalized Area Over reflectance Curve (NAOC) is proposed as a new index for remote sensing estimation of the leaf chlorophyll content of heterogeneous areas with different crops, different canopies and different types of bare soil. This index is based on the calculation of the area over the reflectance curve obtained by high spectral resolution reflectance measurements, determined, from the integral of the red–near-infrared interval, divided by the maximum reflectance in that spectral region. For this, use has been made of the experimental data of the SPARC campaigns, where in situ measurements were made of leaf chlorophyll content, LAI and fCOVER of 9 different crops – thus, yielding 300 different values with broad variability of these biophysical parameters. In addition, Proba/CHRIS hyperspectral images were obtained simultaneously to the ground measurements. By comparing the spectra of each pixel with its experimental leaf chlorophyll value, the NAOC was proven to exhibit a linear correlation to chlorophyll content. Calculating the correlation between these variables in the 600–800 nm interval, the best correlation was obtained by computing the integral of the spectral reflectance curve between 643 and 795 nm, which practically covers the spectral range of maximum chlorophyll absorption (at around 670 nm) and maximum leaf reflectance in the infrared (750–800 nm). Based on a Proba/CHRIS image, a chlorophyll map was generated using NAOC and compared with the land-use (crops classification) map. The method yielded a leaf chlorophyll content map of the study area, comprising a large heterogeneous zone. An analysis was made to determine whether the method also serves to estimate the total chlorophyll content of a canopy, multiplying the leaf chlorophyll content by the LAI. To validate the method, use was made of the data from another campaign ((SEN2FLEX), in which measurements were made of different biophysical parameters of 7 crops, and hyperspectral images were obtained with the CASI imaging radiometer from an aircraft. Applying the method to a CASI image, a map of leaf chlorophyll content was obtained, which on, establishing comparisons with the experimental data allowed us to estimate chlorophyll with a root mean square error of 4.2 μg/cm2, similar or smaller than other methods but with the improvement of applicability to a large set of different crop types.  相似文献   

14.
The objective of this research is to select the most sensitive wavelengths for the discrimination of the imperceptible spectral variations of paddy rice under different cultivation conditions. The paddy rice was cultivated under four different nitrogen cultivation levels and three water irrigation levels. There are 2151 hyperspectral wavelengths available, both in hyperspectral reflectance and energy space transformed spectral data. Based on these two data sets, the principal component analysis (PCA) and band-band correlation methods were used to select significant wavelengths with no reference to leaf biochemical properties, while the partial least squares (PLS) method assessed the contribution of each narrow band to leaf biochemical content associated with each loading weight across the nitrogen and water stresses. Moreover, several significant narrow bands and other broad bands were selected to establish eight kinds of wavelength (broad-band) combinations, focusing on comparing the performance of the narrow-band combinations instead of broad-band combinations for rice supervising applications. Finally, to investigate the capability of the selected wavelengths to diagnose the stress conditions across the different cultivation levels, four selected narrow bands (552, 675, 705 and 776 nm) were calculated and compared between nitrogen-stressed and non-stressed rice leaves using linear discriminant analysis (LDA). Also, wavelengths of 1158, 1378 and 1965 nm were identified as the most useful bands to diagnose the stress condition across three irrigation levels. Results indicated that good discrimination was achieved. Overall, the narrow bands based on hyperspectral reflectance data appear to have great potential for discriminating rice of differing cultivation conditions and for detecting stress in rice vegetation; these selected wavelengths also have great potential use for the designing of future sensors.  相似文献   

15.
Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350–2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg−1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg−1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg−1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and 2290 nm, leaf spectral bands near 700, 890 and 900 nm in PLSR models were important wavelengths for soil arsenic prediction. Moreover, soil arsenic showed significantly positive correlations with soil organic matter (r = 0.62, p < 0.01) and leaf arsenic (r = 0.77, p < 0.01), and a significantly negative correlation with leaf chlorophyll (r = −0.67, p < 0.01). The results showed that the prediction of arsenic contents using soil and leaf spectra may be based on their relationships with soil organic matter and leaf chlorophyll contents, respectively. Although RPD of 1.47 was below the recommended RPD of >2 for soil analysis, arsenic prediction in agricultural soils can be improved by combining the leaf and soil spectra.  相似文献   

16.
This study presents an approach for chlorophyll content determination of small shallow water bodies (kettle holes) from hyperspectral airborne ROSIS and HyMap data (acquired on 15 May and 29 July 2008 respectively). Investigated field and airborne spectra for almost all kettle holes do not correspond to each other due to differences in ground sampling distance. Field spectra were collected from the height of 30–35 cm (i.e. area of 0.01–0.015 m2). Airborne pixels of ROSIS and HyMap imageries cover an area of 4 m2 and 16 m2 respectively and their spectra are highly influenced by algae or bottom properties of the kettle holes. Analysis of airborne spectra revealed that chlorophyll absorption near 677 nm is the same for both datasets. In order to enhance absorption properties, both airborne hyperspectral datasets were normalized by the continuum removal approach. Linear regression algorithms for ROSIS and HyMap datasets were derived using normalized average chlorophyll absorption spectra for each kettle hole. Overall accuracy of biomass mapping for ROSIS data was 71%, and for HyMap 64%. Biomass mapping results showed that, depending on the type of kettle hole, algae distribution, the ‘packaging effect’ and bottom reflection lead to miscalculations of the chlorophyll content using hyperspectral airborne data.  相似文献   

17.
地球表面物体反射特性是遥感科学研究和教学的重要组成部分,本文立足于地物自身的反射特性,从野外光谱反射率测量和卫星遥感数据行星反射率计算两方面,提出星地一体的地物反射特性联合教学模式,为开展遥感类实践教学提供一定的参考和借鉴.实践证明,该教学模式不仅可以使学生更容易理解和掌握地物和行星反射率的基本概念,而且能够进一步加深...  相似文献   

18.
Thaumastocoris peregrinus (T. peregrinus) is a sap sucking insect that feeds on Eucalyptus leaves. It poses a threat to the forest industry by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. Remote sensing techniques offer the potential to detect and map T. peregrinus infestations in plantation forests using current operational hyperspectral scanners. This study resampled field spectral data measured from a field spectrometer to the band settings of the Hyperion sensor in order to assess its potential in predicting T. peregrinus damage. Normalized indices based on NDVI ratios were calculated using the resampled visible and near-infrared bands of the Hyperion sensor to assess its utility in predicting T. peregrinus damage using Partial Least Squares (PLS) regression. The top 20 normalized indices were based on specific biochemical absorption features that predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.63 on an independent test dataset. The top 20 indices were located in the near-infrared region between 803.3 nm and 894.9 nm. Twenty three previously published hyperspectral indices which have been used to assess stress in vegetation were also used to predict T. peregrinus damage and resulted in a mean bootstrapped R2 value of 0.59 on an independent test dataset. The datasets were combined to assess its collective strength in predicting T. peregrinus damage and significant indices were chosen based on variable importance scores (VIP) and were then entered into a PLS model. The indices chosen by VIP predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.71 on an independent test dataset. A greedy backward variable selection model was further tested on the VIP selected indices in order to find the best subset of indices with the best predictive accuracy. The greedy backward variable selection model identified 3 indices and performed the best by predicting damage with an R2 value of 0.74 with the lowest RMSE of 1.30% on an independent test dataset. The best three indices identified include the anthocyanin reflectance index, carotenoid reflectance index and the normalized index calculated at 864.4 and 884.7 nm. Individual relationships between these indices and T. peregrinus damage indicate that high correlations are obtained with the inclusion of a few severely infested trees in the sample size. When the severely infested trees were removed from the study, the normalized index (864.4 and 884.7 nm) and the anthocyanin reflectance index still yielded significant correlations at the 99% confidence interval. This study indicates the significance of normalized indices and spectral indices calculated from the visible and near-infrared bands in hyperspectral data for the prediction of T. peregrinus damage.  相似文献   

19.
The research evaluated the information content of spectral reflectance (laboratory and airborne data) for the estimation of needle chlorophyll (CAB) and nitrogen (CN) concentration in Norway spruce (Picea abies L. Karst.) needles. To identify reliable predictive models different types of spectral transformations were systematically compared regarding the accuracy of prediction. The results of the cross-validated analysis showed that CAB can be well estimated from laboratory and canopy reflectance data. The best predictive model to estimate CAB was achieved from laboratory spectra using continuum-removal transformed data (R2cv = 0.83 and a relative RMSEcv of 8.1%, n = 78) and from hyperspectral HyMap data using band-depth normalised spectra (R2cv = 0.90, relative RMSEcv = 2.8%, n = 13). Concerning the nitrogen concentration, we observed somewhat weaker relations, with however still acceptable accuracies (at canopy level: R2cv = 0.57, relative RMSEcv = 4.6%). The wavebands selected in the regression models to estimate CAB were typically located in the red edge region and near the green reflectance peak. For CN, additional wavebands related to a known protein absorption feature at 2350 nm were selected. The portion of selected wavebands attributable to known absorption features strongly depends on the type of spectral transformation applied. A method called “water removal” (WR) produced for canopy spectra the largest percentage of wavebands directly or indirectly related to known absorption features. The derived chlorophyll and nitrogen maps may support the detection and the monitoring of environmental stressors and are also important inputs to many bio-geochemical process models.  相似文献   

20.
天宫一号高光谱成像仪具有空间分辨率高、光谱分辨率高、图谱合一等特性,在中国航天高光谱领域具有里程碑的意义。针对一般遥感场景分类数据集尺度单一、光谱分辨率较低等问题,本文提出基于天宫一号的多谱段、高空间分辨率、多时相高光谱遥感场景分类数据集(TG1HRSSC)。利用天宫一号高光谱成像仪获取的高质量数据,经过辐射校正、几何校正、空间裁剪、波段筛选、数据质量分析与控制等,制作了一批通用的航天高光谱遥感场景分类数据集,通过载人航天空间应用数据推广服务平台(http://www.msadc.cn[2019-09-10])进行分发和共享。该数据集包括天宫一号高光谱成像仪获取的城镇、农田、林地、养殖塘、荒漠、湖泊、河流、港口、机场等9个典型地物场景的204个高光谱影像数据,其中5 m分辨率全色谱段1个波段、10 m分辨率可见近红外谱段54个有效波段以及20 m分辨率短波红外谱段52个有效波段。研究利用AlexNet、VGG-VD-16、GoogLeNet等深度学习算法网络对构建的数据集进行场景分类的试验,结果表明该数据集的场景分类应用实现较好效果。由于该数据集具备高分辨、高光谱等特征优势,未来在语义理解、多目标检测等方面有着广泛的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号