共查询到7条相似文献,搜索用时 15 毫秒
1.
针对现有植被净初级生产力研究对城市圈、城市带尺度缺乏关注的问题,基于MODIS遥感数据、地面气象资料等,利用改进的CASA模型,结合回归分析、相关分析等方法探究了2000—2013年皖江城市带植被NPP的时空变化及其对气候因子的响应,为区域生态环境质量评价提供参考。结果表明:近14年来,皖江城市带植被NPP总体呈增加趋势;不同土地利用类型NPP差异显著,林地草地耕地建设用地未利用土地水体;年NPP均值呈现由南部向西北部减少的空间分布特征;植被NPP年际变化率较小,介于±10gC·m-2·a-1范围内;温度是影响研究区植被NPP时空变化的主要气候因子。 相似文献
2.
Net Primary Productivity (NPP) is a significant biophysical vegetation variable to understand the spatio-temporal distribution of carbon and source-sink nature of the ecosystem. This study was carried out in a forest plantation area and aimed to (i) estimate the spatio-temporal patterns of NPP during 2009 and 2010 using Carnegie-Ames-Stanford Approach [CASA] model and (ii) study the effects of climate variables on the NPP using generalized linear modelling (GLM) approach. The total annual NPP varied from 157.21 to 1030.89 gC m?2 yr?1 for the year 2009 and from 154.36 to 1124.85 g C m?2 yr?1 for the year 2010. The annual NPP was assessed across four major plantation types, where maximum NPP gain (106 and 139 g C m?2 yr?1 ) in October was noticed in teak (Tectona grandis) and minimum (77 and 109 g C m?2 yr?1 ) in eucalyptus (Eucalyptus hybrid) during 2009 and 2010.The validation, using field-estimated NPP, showed under-estimation of modelled NPP, with maximum MAPE of 34% for eucalyptus and minimum of 13% for teak. The dominant influence of precipitation on the NPP was revealed by GLM explaining more than 20% of variation. CASA model efficiently estimated the annual NPP of plantations. The accuracy could be improved further with inclusion of higher resolution data. 相似文献
3.
稀疏植被净初级生产力时空变化及气象因素关系分析 总被引:1,自引:0,他引:1
本文探讨了2001-2018年古尔班通古特沙漠植被NPP时空格局,基于改进的CASA模型,采用空间分析、相关性分析及地理探测器模型等方法,揭示了研究区NPP气候驱动因子及其影响。结果表明:①古尔班通古特沙漠近18年植被NPP变化总体呈现波动增加趋势,增速为0.56 gC· a-1,NPP均值为46.90 gC· m-2· a-1;②2001-2018年,年均NPP整体呈西低东高、北低南高的空间分布格局,但从动态上而言,基本呈现沙漠腹地较稳定、四周较活跃的格局;③古尔班通古特沙漠植被NPP主要受降水因子的影响,与降水、气温因子均呈正相关关系,从各因子驱动力分析而言,降水因子(0.614 4)为限制荒漠植被生长的主导因素。 相似文献
4.
基于CASA模型的北京植被NPP时空格局及其因子解释 总被引:2,自引:0,他引:2
以北京为研究区,整合遥感数据、气象数据及其他多源辅助数据,基于改进的光能利用率(carnegie-amesstanford approach,CASA)模型分析了2010年北京植被生态系统净初级生产力(net primary productivity,NPP)的时空分布格局及其主要影响因素。结果表明:12010年北京NPP总量为5.5 Tg C,其NPP的空间分布格局为北部和西部山区总量较高,平原区NPP总量较低;2北京植被NPP的季节变化明显,夏季NPP最大,占全年的62%,冬季最小,仅占3%,春季和秋季分别占全年NPP总量的18%和17%;3北京植被NPP受水分和热量条件限制,不同区域的主要限制因子不同,北部和西部山区自然植被受气温影响较大,平原区农作物生长更容易受降水影响,而在山区向平原过渡区域的植被受太阳辐射变化影响明显。 相似文献
5.
净初级生产力遥感估算模型空间尺度转换 总被引:2,自引:1,他引:2
采用基于混合像元的结构分析方法和支持向量机(SVM)算法,建立了高分辨率遥感数据(TM)向低分辨率遥感数据(MODIS)的尺度转换模型,实现了由高分辨率遥感数据获得的NPP向低分辨率遥感数据获得的NPP的空间尺度转换。对低分辨率遥感数据(MODIS)估算的NPP结果进行了尺度效应校正。结果表明:SVM回归模型模拟出的尺度效应校正因子Rj_corrected与1-F中覆盖度草地之间的相关性较高,R2达到0.81。尺度效应校正前的NPPMODIS与NPPTM的相关性较低,R2仅为0.69,RMSE为3.47;尺度效应校正后的NPPMODIS_corrected与NPPTM的相关性较高,R2达到0.84,RMSE为1.87。因此,经过尺度效应校正后的NPP无论是在相关性还是在误差方面有了很大程度的提高。 相似文献
6.
Shufen Pan Guangsheng Chen Wei Ren Shree R. S. Dangal Kamaljit Banger Jia Yang 《International Journal of Digital Earth》2018,11(6):558-582
Terrestrial ecosystems play a significant role in global carbon and water cycles because of the substantial amount of carbon assimilated through net primary production and large amount of water loss through evapotranspiration (ET). Using a process-based ecosystem model, we investigate the potential effects of climate change and rising atmospheric CO2 concentration on global terrestrial ecosystem water use efficiency (WUE) during the twenty-first century. Future climate change would reduce global WUE by 16.3% under high-emission climate change scenario (A2) and 2.2% under low-emission climate scenario (B1) during 2010–2099. However, the combination of rising atmospheric CO2 concentration and climate change would increase global WUE by 7.9% and 9.4% under A2 and B1 climate scenarios, respectively. This suggests that rising atmospheric CO2 concentration could ameliorate climate change-induced WUE decline. Future WUE would increase significantly at the high-latitude regions but decrease at the low-latitude regions under combined changes in climate and atmospheric CO2. The largest increase of WUE would occur in tundra and boreal needleleaf deciduous forest under the combined A2 climate and atmospheric CO2 scenario. More accurate prediction of WUE requires deeper understanding on the responses of ET to rising atmospheric CO2 concentrations and its interactions with climate. 相似文献
7.
Xiong Yan Kanako Muramatsu Masahiro Hirata Kazato Oishi Ichirow Kaihotsu Tamio Takamura 《地球空间信息科学学报》2013,16(2):117-122
We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite-II (ADEOS-II) Global Imager (GLI) multi-spectral data. We derive an NPP estimation algorithm from ground measurement data on temperate plants in Japan. By the algorithm, we estimate NPP using a vegetation index based on pattern decomposition (VIPD) for the Mongolian Plateau. The VIPD is derived from Landsat ETM+multi-spectral data, and the resulting NPP estimation is compared with ground data measured in a semi-arid area of Mongolia. The NPP estimation derived from satellite remote sensing data agrees with the ground measurement data within the error range of 15% when all above-ground vegetation NPP is calculated for different vegetation classifications. 相似文献