首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper outlines the development as well as implementation of a numerical procedure for coupled finite element analysis of dynamic problems in geomechanics, particularly those involving large deformations and soil-structure interaction. The procedure is based on Biot’s theory for the dynamic behaviour of saturated porous media. The nonlinear behaviour of the solid phase of the soil is represented by either the Mohr Coulomb or Modified Cam Clay material model. The interface between soil and structure is modelled by the so-called node-to-segment contact method. The contact algorithm uses a penalty approach to enforce constraints and to prevent rigid body interpenetration. Moreover, the contact algorithm utilises a smooth discretisation of the contact surfaces to decrease numerical oscillations. An Arbitrary Lagrangian–Eulerian (ALE) scheme preserves the quality and topology of the finite element mesh throughout the numerical simulation. The generalised-α method is used to integrate the governing equations of motion in the time domain. Some aspects of the numerical procedure are validated by solving two benchmark problems. Subsequently, dynamic soil behaviour including the development of excess pore-water pressure due to the fast installation of a single pile and the penetration of a free falling torpedo anchor are studied. The numerical results indicate the robustness and applicability of the proposed method. Typical distributions of the predicted excess pore-water pressures generated due to the dynamic penetration of an object into a saturated soil are presented, revealing higher magnitudes of pore pressure at the face of the penetrometer and lower values along the shaft. A smooth discretisation of the contact interface between soil and structure is found to be a crucial factor to avoid severe oscillations in the predicted dynamic response of the soil.  相似文献   

2.
Field tests are widely used for soil characterization in geotechnical applications in spite of implementation difficulties. The light penetrometer is a well-known testing tool for fine soils, but the physical interpretation of the output data in the case of coarse granular materials is far less evident. Indeed, the data are considerably more sensitive in this case to various parameters such as fabric structure, particle shapes or the applied impact energy. In order to achieve a better understanding of the penetration process into a coarse granular material, a numerical study was performed by means of contact dynamics simulations. The penetration of a moving tip in a sample composed of irregular grain shapes was studied and the influence of the driving velocity and input energy on the penetration strength was analyzed. The results show that the latter grows with both the penetration rate and energy, despite the strong fluctuations occur due to a jamming–unjamming process in which the contact network connectivity evolves intermittently in correlation with the penetration strength. This analysis suggests that the time-averaged data provided by a penetrometer is reliable information from which the bulk strength properties of coarse granular materials can be evaluated.  相似文献   

3.
The Strain Path Method (SPM) is an approximate framework for simulating the disturbance caused by piles or penetrometers in soil. The key conceptual assumption of the SPM is that the deformation and strain fields caused during these penetration processes are strongly kinematically constrained (especially during undrained penetration of clays) and can be estimated independently from the actual constitutive properties of the surrounding soil. Previous applications of SPM have estimated strain fields for a variety of penetrometer geometries using velocity fields of ideal inviscid fluids. This paper refines the strain field for penetrometers with 60° conical tips using numerically computed velocity fields in viscous fluids with a variety of boundary conditions imposed on the penetrometer shaft. Following a parametric study, a set of flow conditions is selected which provides a best fit between computed soil deformations and physical displacement measurements made in three separate experiments. The approach is simple and rapid and, while highlighting some of the inaccuracies associated with the existing SPM solution, may also be used for comparative purposes to assist the development of other approaches to the deep penetration problem. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes a numerical model developed to simulate the wave propagation in an elastic media that is applied to in situ dynamic penetration test devices currently used for site characterization. In the model, dynamic equilibrium equations are solved by finite difference analysis in the time domain to produce the discretization of a penetration system – including hammer, rod, penetrometer (or sampler) and soil. In standard penetration tests numerical simulations are shown to agree well with energy measurements derived from force and acceleration signals produced by the impact of a hammer. A parametric study allowed the identification of the relevant factors affecting penetration by demonstrating that the energy effectively delivered to the soil is a function of hammer height of fall and weight of both hammer and rods, as well as the permanent penetration of the penetrometer into the ground produced by a single stroke. Based on these evidences, an approach is suggested to compare results from different dynamic penetration tests without the need to rely on empirical correlations, which is achieved by demonstrating that different equipments should yield the same normalized energy once the influence of both the hammer and rod potential energies are properly considered.  相似文献   

5.
吕阳  王胤  杨庆 《岩土力学》2015,36(12):3615-3624
吸力式筒形基础在海洋工程中已获得越来越广泛地应用,其安装过程的数值模拟对指导工程实践具有重要意义。在大型通用有限元软件ABAQUS平台上建立了二维轴对称模型,基于ALE(任意拉格朗日-欧拉法)技术模拟了黏土中吸力筒的大变形沉贯过程。模拟过程利用了子程序VUFIELD控制土体的不排水抗剪强度和弹性模量随土体深度变化。参照离心机试验及理论计算,对模型进行验证。利用已验证模型分析不同吸力下沉贯阻力、土塞高度,并讨论了筒壁摩擦特性。数值计算结果表明,ALE技术能有效地模拟吸力筒贯入过程,避免网格畸变。贯入方式对贯入阻力影响很大,吸力式贯入阻力明显低于压力式贯入阻力。进一步研究发现,随着最终吸力值的增大,沉贯阻力会显著降低,土塞高度会显著提高。对内壁摩擦特性的研究表明,内壁摩擦阻力是导致沉贯阻力改变的主要因素,并且相比吸力式贯入方式,筒壁摩擦特性会对压力式贯入造成更大的影响。  相似文献   

6.
范庆来  栾茂田  刘占阁 《岩土力学》2009,30(9):2850-2854
T型触探仪近年来在国外的海洋软土地基原位测试中得到了广泛应用,但贯入速率、地基土强度的各向异性与渐进软化等因素对于贯入阻力的影响没有得到系统的研究。在大型有限元软件ABAQUS平台上进行二次开发,针对基于Tresca屈服准则的理想弹塑性模型进行了相应改进,使之可以比较合理地反映上述因素的影响,进而对软土中T型触探仪的贯入机制进行了比较系统的数值分析。计算结果表明,贯入速率、地基土强度的各向异性与强度软化效应对于T型触探仪的贯入阻力系数影响较大。通过与有关极限分析上限解的对比分析,在一定程度上验证了有限元分析结果的合理性。  相似文献   

7.
Discrete element modelling of deep penetration in granular soils   总被引:1,自引:0,他引:1  
This paper presents a numerical study on deep penetration mechanisms in granular materials with the focus on the effect of soil–penetrometer interface friction. A two‐dimensional discrete element method has been used to carry out simulation of deep penetration tests on a granular ground that is under an amplified gravity with a K0 lateral stress boundary. The numerical results show that the deep penetration makes the soil near the penetrometer move in a complex displacement path, undergo an evident loading and unloading process, and a rotation of principal stresses as large as 180°. In addition, the penetration leads to significant changes in displacement and velocity fields as well as the magnitude and direction of stresses. In general, during the whole penetration process, the granular ground undergoes several kinds of failure mechanisms in sequence, and the soil of large deformation may reach a stress state slightly over the strength envelope obtained from conventional compression tests. Soil–penetrometer interface friction has clear effects on the actual penetration mechanisms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
刘笋  蒋明镜  付昌  朱俊高 《岩土力学》2018,39(3):933-942
为研究结构性砂土静力触探的宏微观力学特性,在10 g重力场中生成一个净砂地基;将一个考虑胶结厚度的微观胶结接触模型引入到净砂地基中以生成结构性砂土地基;用一定速率移动探杆以模拟结构性砂土中的静力触探过程,其中,探杆由4面刚性墙组成。结果表明,随着贯入深度的增加,锥尖贯入阻力逐渐增大,增长速度逐渐减慢,在达到临界深度后贯入阻力在某一定值附近波动;锥尖部位有明显的力链集中现象,力链的集中程度和范围会随着贯入深度的增加而逐渐提高和扩大;静力触探过程中,探杆两侧的土体经历了明显的加载和卸载过程,且土体主应力方向发生偏转;离探杆越远,主应力偏转速度越慢,最终偏转角越小;不同深度处平均纯转动率(APR)的变化趋势基本相同,而APR最大值会随着土体深度而逐渐增加;探杆的贯入会使土颗粒间胶结发生破坏,胶结的破坏形式主要有拉剪破坏和压剪破坏两种,而拉剪破坏数目要比压剪破坏数目多。  相似文献   

9.
Rate effects are examined in the steady pore pressure distribution induced as a result of penetration of standard and ball penetrometers. The incompressible flow field, which develops around the penetrometer is used to define the approximate soil velocity field local to the penetrometer tip. This prescribes the Lagrangian framework for the migration of the fluid saturated porous medium, defining the advection of induced pore pressures relative to the pressure‐monitoring locations present on the probe face. In two separate approaches, different source functions are used to define the undrained pore fluid pressures developed either (i) on the face of the penetrometer or (ii) in the material comprising the failure zone surrounding the penetrometer tip. In the first, the sources applied at the tip face balance the volume of fluid mobilized by the piston displacement of the advancing penetrometer. Alternately, a fluid source distribution is evaluated from plasticity solutions and distributed throughout the tip process zone: for a standard penetrometer, the solution is for the expansion of a spherical cavity, and for the ball penetrometer, the solution is an elastic distribution of stresses conditioned by the limit load embedded within an infinite medium. For the standard penetrometer, the transition from drained to undrained behavior occurs over about two orders of magnitude in penetration rate for pore pressures recorded at the tip (U1) and about two‐and‐a‐half orders of magnitude for the shoulder (U2). This response is strongly influenced by the rigidity of the soil and slightly influenced by the model linking induced total stresses to pore pressures. For the ball penetrometer, the transition from drained to undrained behavior also transits two‐and‐a‐half orders of magnitude in penetration rate, although it is offset to higher dimensionless penetration rates than for standard penetration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
近年来,随着全球海洋开发战略的逐步开展,越来越多的工程建设和试验研究将在海洋中进行,为了掌握海底的土体环境,静力触探(CPT)技术在国内外海洋工程领域中的运用变得更加重要。本文根据国内外大量文献中相关海洋原位测试技术的报道,对海洋静力触探的国内外发展历程进行总结,重点阐述和研究了一种适用于海底淤泥质土的球型全流触探仪。分析结果表明,球型全流触探仪在海洋岩土工程勘察中具有很好的应用前景,且集测量数据精确可靠、试验方法多样化、理论解析丰富全面等优点于一身;利用球型全流触探仪能够有效避免较大的实测数据修正,贯入机理清晰严谨,开展循环贯入试验可以评价土的重塑特性,变速率贯入试验在评价应变速率和现场土体强度以及测试中土体固结状态之间的关系上具有优势;结合现场试验,对比分析传统CPT和球型全流触探仪的试验结果,并考虑海底软土的性质,摸索出一种可停靠球型探头新形式。  相似文献   

11.
A solution is developed for the build‐up, steady and post‐arrest dissipative pore fluid pressure fields that develop around a blunt penetrometer that self‐embeds from freefall into the seabed. Arrest from freefall considers deceleration under undrained conditions in a purely cohesive soil, with constant shear strength with depth. The resulting decelerating velocity field is controlled by soil strength, geometric bearing capacity factors, and inertial components. At low impact velocities the embedment process is controlled by soil strength, and at high velocities by inertia. With the deceleration defined, a solution is evaluated for a point normal dislocation penetrating in a poroelastic medium with a prescribed decelerating velocity. Dynamic steady pressures, PD, develop relative to the penetrating tip geometry with their distribution conditioned by the non‐dimensional penetration rate, UD, incorporating impacting penetration rate, consolidation coefficient and penetrometer radius, and the non‐dimensional strength, ND, additionally incorporating undrained shear strength of the sediment. Pore pressures develop to a steady peak magnitude at the penetrometer tip, and drop as PD=1/xD with distance xD behind the tip and along the shaft. Peak induced pressure magnitudes may be correlated with sediment permeabilities, post‐arrest dissipation rates may be correlated with consolidation coefficients, and depths of penetration may be correlated with shear strengths. Together, these records enable strength and transport parameters to be recovered from lance penetrometer data. Penetrometer data recorded off La Palma in the Canary Islands (J. Volcanol. Geotherm. Res. 2000; 101 :253) are used to recover permeabilities and consolidation coefficients from peak pressure and dissipation response, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
周小文  程力  周密  王齐 《岩土力学》2019,40(5):1713-1720
目前球形全流贯入被仪广泛应用于岩土离心试验中,以表征软弱黏土土样的抗剪性能。然而,在离心加速度作用下离心机试验中的球贯入仪比现场使用的标准球贯入仪有更大的加载杆与球的面积比a、更大的等效原型直径以及不一样的球-土摩擦系数,从而使得离心机球体会出现不一样的贯入特性,进而导致不一样的土体抗剪承载力校验系数。通过大变形有限元(large deformation finite element,简称LDFE)方法对中国常见离心机球形贯入仪贯入单层黏土进行分析,获得不同几何尺寸和摩擦系数下球形贯入仪的贯入特性。计算结果通过与有关解析解以及其他前人研究结论的对比分析,验证了有限元分析结果的合理性。通过大量参数分析表明,球摩擦系数对空腔的临界深度以及深层破坏深度的影响较小,面积比a对浅层和深层承载力系数以及达到深层破坏深度有显著的影响。根据数值模拟的结果,提出了不同面积比和摩擦系数下的极限间隙深度Hc、浅层和深层临界破坏模式深度Hd、不同摩擦系数和面积比情况下的深层承载力系数和浅层承载力校准系数的计算公式,从而能获得更精确的土体抗剪强度,为离心机中球形贯入仪的应用提供了理论依据。  相似文献   

13.
Studying the mechanical characteristics of weak sedimentary rocks is a burning issue in civil and mining engineering designs and analysis since obtaining rock mechanical properties of these has always faced lots of problems and uncertainties due to the structural weaknesses. One of the main causes of these problems is the difficulty of preparing high-quality core specimens recommended by testing standards or suggested methods for uniaxial compressive strength (UCS). For resolving this issue, in this study, common methods for indirect estimation of UCS of weak rocks were initially studied, their merits and demerits were analyzed, and then, in light of their positive and negative points, a new modified device was designed with a different mechanical structure and force exertion system, which could be practically used to present a new method for indirect estimation of UCS. Thus, in this study, we initially had a general view of the new dynamic needle penetrometer and its modified parts and their capabilities. After introduction, as the first phase of the practical studies on this, dynamic needle penetration resistance (DNPR) was measured, as the dynamic needle penetrometer test result, from 65 specimens collected from three different projects. Then, the relationships between DNPR and UCS of the rock specimens and the regressions of correlations were statistically analyzed. Finally, a linear equation with considerable accuracy resulted from analysis, and using this led to solving the main problem of this research by proposing a developed method for indirect estimation of uniaxial compressive strength of weak rocks.  相似文献   

14.
Feng  Ya-Song  Du  Yan-Jun  Xia  Wei-Yi  Reddy  Krishna R. 《Acta Geotechnica》2020,15(6):1467-1480

Recently, two novel binders, one by-product-based binder named as GM and one phosphate-based binder named as KMP, have emerged that can stabilize soils spiked with mixed lead and zinc contaminants. However, field evaluations of the stabilization of actual soils that contaminated with mixed zinc (Zn) and inorganic chloride (Cl?) using GM and KMP have not been performed yet. This study presents a pilot-scale field test to evaluate the performance of GM and KMP to stabilize these inorganic contaminants in soils at two locations in an abandoned industrial plating plant site. The field soils were stabilized and cured for 1, 3, 7, and 28 days and tested for dry density, dynamic cone penetration, soil pH, and leachability. Laboratory unconfined compression tests were performed, and the relationship between unconfined compressive strength and dynamic cone penetrometer index was assessed. The results showed that the strength of both the GM- and KMP-stabilized soils after 28-day curing improved significantly, and the leached Zn and Cl? concentrations were well below the corresponding remediation limits. In general, the KMP-stabilized soil demonstrated superior performance in terms of higher dry density, unconfined compressive strength, average dynamic cone penetration resistance, lower dynamic cone penetrometer index in the early curing stage (7 days), and lower leached Zn concentration under all curing times. In contrast, the GM exhibited superior immobilization of Cl? in the contaminated soil irrespective of the curing time. The results demonstrate that GM and KMP are promising binders for treating Zn- and Cl?-contaminated soils at plating and other industry sites with similar contaminants.

  相似文献   

15.
An analytical model to simulate the penetration of the piezocone penetrometer in cohesive soils is presented here. The elasto-plastic coupled field equations of the saturated cohesive soils (given by Voyiadjis and Abu-Farsakh) is used in this analysis. The numerical simulation of the piezocone penetration is implemented into a finite element program. The analytical model is used to analyze the miniature piezocone penetration tests (PCPT) conducted at LSU calibration chambers. Simulation of the piezocone penetration is done for two cases. In the first case, the soil–penetrometer interface friction is neglected, while in the second case, the soil–penetrometer interface friction is taken into consideration. The constraint approach is used to model the soil–piezocone interface friction in which the Mohr–Coulomb frictional model is used to define the sliding potential. Analysis is done for three different soil specimens with different stress histories. The results of the numerical simulations are compared with the experimental measurements of the miniature piezocone penetration tests (PCPT) in cohesive soil specimens conducted in LSU calibration chambers. The resulting excess pore pressure distribution and its dissipation using the numerical model are compared with some available prediction methods. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
This paper suggests a new method for obtaining steady‐state solutions for ‘full‐flow’ penetrometers. The method is based on the numerical solution of the small strain plastic‐flow problem (i.e. rigid plastic material) with an inhomogeneous strength field, which is determined by converting changes of material properties over time in a stationary frame of reference into spatial distribution of strength in a moving frame of reference. Rather than building streamlines from back integration of soil element distortion, as previous methods have suggested, the method treats the domain as continuous with the associated field equations. The method employs an upstream weighting technique for the determination of information flow within the domain. The execution order for the calculation is based on topological ordering. This results in the calculation having a complexity of O(N), as compared with O(N1.5) for the strain path or streamline methods (N is the number of discretized points), which significantly reduces the calculation time. The formulation is presented for the cylindrical (T‐bar) penetrometer, and includes aspects of soil strength degradation, strain rate effects, strength anisotropy, and interface strength law. Comparison to previously published values, based on large displacement finite element simulations with remeshing, showed good agreement, indicating on the correctness of the suggested approach. Investigation into the soil rigid‐body rotation and the remolding effect on anisotropy characteristics showed an interesting behavior, where the decrease of strength anisotropy due to remolding has a greater influence when the soil strength is higher in the vertical direction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
着陆器足垫垂直冲击模型试验研究   总被引:1,自引:0,他引:1  
着陆器着陆过程中会产生巨大的冲击作用,影响其内部精密仪器的正常工作。因此,研究着陆器足垫与土体相互作用对着陆器软着陆具有重要意义。基于对着陆过程的研究,将问题分解为垂直冲击和水平滑动两个方向的运动,并通过力的平衡和动量定理建立了垂直冲击的动力模型。利用独立研发的垂直冲击模型试验装置,探讨了冲击过程中土体密实度、冲击速率和冲击质量等对足垫刺入深度、最大轴力和最大加速度等的影响。分析结果表明,足垫刺入深度和最大轴力都随着冲击能量的增大而增大,并且逐渐趋于平稳。土体越密实、冲击质量越小,足垫加速度峰值则越大。试验结果还与动力模型进行了对比,结果表明,动力模型能合理地反映出着陆器在垂直冲击阶段的动力特性。  相似文献   

18.
任意拉格朗日-欧拉(ALE)方法吸取了拉格朗日和欧拉法的优点,避免了常规有限元中拉格朗日方法的网格畸变问题,适用于开口管桩高频振动贯入过程的计算分析。采用ALE有限元方法,建立开口管桩高频振动贯入过程的数值模型,对沉桩过程中挤土效应、桩侧阻力和土塞效应的变化规律进行了详细研究。研究结果表明:挤土应力主要沿径向传播,且深层土体受到的挤土应力比浅层土体大;水平挤土位移随管桩贯入深度的增加而增大,而最大水平挤土位移与管桩贯入深度存在累积效应;挤土效应的影响范围约为10倍管径,因此在施工过程中要给以足够重视;桩外侧摩阻力随贯入深度增加呈近似线性增长,桩内侧摩阻力随贯入深度增加而呈非线性增长,增长速率随贯入深度增加而逐渐增大;管内土塞处于不完全闭塞状态,土塞程度由完全非闭塞向部分闭塞过渡。此外,研究了土体模量、桩土界面摩擦系数、振动频率和桩径对土体位移的影响。  相似文献   

19.
冲击压路机已大量用于各种原位地基土以及填土的压实处理,压实深度明显大于传统压路机和平板压实设备。但冲击压路机在冲击碾压过程中的能量传递过程、土中应力和位移的分布情况等尚不清楚。为探讨冲击碾压加固地基的机制和加固效果的主要影响因素,研制了冲击碾压模拟试验设备。该设备主要由模型箱、模型冲击轮、简易缓冲装置以及支架与牵引系统四部分组成,其中核心组成部分是具有不同外接圆尺寸大小和质量的三边形模型冲击轮。模型冲击轮可通过牵引系统中电机的牵引作用,在试验土体表面沿直线滚动,对土体施加冲击碾压作用。采用该设备进行了不同尺寸的模型冲击轮冲击碾压砂土的模型试验,并采用直径为2.5 cm的小型静力触探仪对冲击碾压加固效果进行检测。结果表明:该试验设备可用于实现对非圆形冲击轮冲击压实土体过程的模拟,同时显示冲击轮尺寸对冲碾加固效果的影响与冲碾遍数有关,且该影响在不同深度的土体中会有不同的响应,增大冲击轮的尺寸可以在土体的浅层深度范围内获得更好的加固效果。  相似文献   

20.
以往动力排水固结室内模型试验,通常冲击能量低,软土物理力学响应激发不够,难以寻求与工程实践相符的能量传递规律。利用可提供高冲击能的多向高能高速电磁力冲击智能控制试验系统,对淤泥类超软土进行静动力排水固结模型试验,获得了高能量多遍冲击作用下竖向与表层水平向能量传递规律:(1)冲击荷载下浅层土中相应土压增量始终最大,但随着夯击遍数增加,其下土层土压增幅随之相对增大;而就土层压缩量而言,首遍夯击下浅层土最大,此后中层与深层之值均大于浅层土之值,且其比值随着夯击遍数增加而增大,表明了主要压缩区向下移动;(2)静动力排水固结法中,冲击能量初始主要作用于浅层,此后随着淤泥力学性质不断沿深度方向改善,能量逐渐向下传递以主要加固下层及深层土体;(3)夯击作用下土层表面同一位置处竖向质点振动速度最大,径向次之,环向最小,且在一定的距离处趋向同一稳定值;振动加速度亦呈现相同的变化规律;模型试验得到的振动主要影响范围与实际工程一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号