首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Satellite surface soil moisture has become more widely available in the past five years, with several missions designed specifically for soil moisture measurement now available, including the Soil Moisture and Ocean Salinity (SMOS) mission and the Soil Moisture Active/Passive (SMAP) mission. With a wealth of data now available, the challenge is to understand the skill and limitations of the data so they can be used routinely to support monitoring applications and to better understand environmental change. This paper examined two satellite surface soil moisture data sets from the SMOS and Aquarius missions against in situ networks in largely agricultural regions of Canada. The data from both sensors was compared to ground measurements on both an absolute and relative basis. Overall, the root mean squared errors for SMOS were less than 0.10 m3 m−3 at most sites, and less where the in situ soil moisture was measured at multiple sites within the radiometer footprint (sites in Saskatchewan, Manitoba and Ontario). At many sites, SMOS overestimates soil moisture shortly after rainfall events compared to the in situ data; however this was not consistent for each site and each time period. SMOS was found to underestimate drying events compared to the in situ data, however this observation was not consistent from site to site. The Aquarius soil moisture data showed higher root mean squared errors in areas where there were more frequent wetting and drying cycles. Overall, both data sets, and SMOS in particular, showed a stable and consistent pattern of capturing surface soil moisture over time.  相似文献   

2.
For more than six years, the Soil Moisture and Ocean Salinity (SMOS) mission has provided multi angular and full-polarization brightness temperature (TB) measurements at L-band. Geophysical products such as soil moisture (SM) and vegetation optical depth at nadir (τnad) are retrieved by an operational algorithm using TB observations at different angles of incidence and polarizations. However, the quality of the retrievals depends on several surface effects, such as vegetation, soil roughness and texture, etc. In the microwave forward emission model used in the retrievals (L-band Microwave Emission Model, L-MEB), soil roughness is modelled with a semi-empirical equation using four main parameters (Qr, Hr, Nrp, with p = H or V polarizations). At present, these parameters are calibrated with data provided by airborne studies and in situ measurements made at a local scale that is not necessarily representative of the large SMOS footprints (43 km on average) at global scale. In this study, we evaluate the impact of the calibrated values of Nrp and Hr on the SM and τnad retrievals based on SMOS TB measurements (SMOS Level 3 product) over the Soil Climate Analysis Network (SCAN) network located in North America over five years (2011–2015). In this study, Qr was set equal to zero and we assumed that NrH = NrV. The retrievals were performed by varying Nrp from −1 to 2 by steps of 1 and Hr from 0 to 0.6 by steps of 0.1. At satellite scale, the results show that combining vegetation and roughness effects in a single parameter provides the best results in terms of soil moisture retrievals, as evaluated against the in situ SM data. Even though our retrieval approach was very simplified, as we did not account for pixel heterogeneity, the accuracy we obtained in the SM retrievals was almost systematically better than those of the Level 3 product. Improved results were also obtained in terms of optical depth retrievals. These new results may have key consequences in terms of calibration of roughness effects within the algorithms of the SMOS (ESA) and the SMAP (NASA) space missions.  相似文献   

3.
Knowledge of sub-pixel heterogeneity, particularly at the passive microwave scale, can improve the brightness temperature (and ultimately the soil moisture) estimation. However, the impact of surface heterogeneity (in terms of soil moisture, soil temperature and vegetation water content) on brightness temperature in an agricultural setting is relatively unknown. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) provided an opportunity to evaluate sub-pixel heterogeneity at the scale of a Soil Moisture Ocean Salinity (SMOS) or the Soil Moisture Active Passive (SMAP) radiometer footprint using field measured data. The first objective of this study was to determine if accounting for surface heterogeneity reduced the error between estimated brightness temperature (Tb) and Tb measured by SMOS. It was found that when accounting for variation in surface soil moisture, temperature and vegetation water content within the pixel footprint, the error between the modelled Tb and the measured Tb was less than if a homogeneous pixel were modelled. The correlation between the surface parameters and the error associated with not accounting for surface heterogeneity were investigated. It was found that there was low to moderate correlation between the error and the coefficient of variance associated with the measured soil moisture, soil temperature and vegetation volumetric water content during the field campaign. However, it was found that the correlations changed depending on the stage of vegetation growth and the amount of time following a precipitation event. At the start of the field campaign (following a precipitation event), there was strong correlation between the error and all three surface parameters (r  0.75). Following a precipitation event close to the middle of the field campaign (during which there was rapid growth in vegetation), there was strong correlation between the error and the variability in vegetation water content (r = 0.89), moderate correlation with soil moisture (r = 0.61) and low correlation with soil temperature (r = 0.26).  相似文献   

4.
This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (HR, and NRp, p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and HR = 0.1, whereas values of ω = 0.06 − 0.08 and HR = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, HR and NRp, p = H,V) were tested in this study, treating SMOS SM retrievals as homogeneous over each pixel instead of retrieving SM over a representative fraction of the pixel, as implemented in the operational SMOS L2 and L3 algorithms. Globally-constant values of ω = 0.10, HR = 0.4 and NRp = −1 (p = H,V) were found to yield SM retrievals that compared best with in situ SM data measured at many sites worldwide from the International Soil Moisture Network (ISMN). The calibration was repeated for collections of in situ sites classified in different land cover categories based on the International Geosphere-Biosphere Programme (IGBP) scheme. Depending on the IGBP land cover class, values of ω and HR varied, respectively, in the range 0.08–0.12 and 0.1–0.5. A validation exercise based on in situ measurements confirmed that using either a global or an IGBP-based calibration, there was an improvement in the accuracy of the SM retrievals compared to the SMOS L3 SM product considering all statistical metrics (R = 0.61, bias = −0.019 m3 m−3, ubRMSE = 0.062 m3 m−3 for the IGBP-based calibration; against R = 0.54, bias = −0.034 m3 m−3 and ubRMSE = 0.070 m3 m−3 for the SMOS L3 SM product). This result is a key step in the calibration of the roughness and vegetation parameters in the operational SMOS retrieval algorithm. The approach presented here is the core of a new forthcoming SMOS optimized SM product.  相似文献   

5.
Image composites are often used for earth surface phenomena studies at regional or national level. The compromise between residual clouds and the length of compositing period is a necessary corollary to the choice of satellite optical data for monitoring earth surface phenomena dynamics. This paper introduced a methodology for estimating availability of cloud-free image composites for optical sensors with various revisiting intervals, using MODIS MOD06 L2 cloud fraction product in the period of 2000–2008. The methodology starts with downscaling of the cloud fraction product to 1 km × 1 km cloud cover binary images. The binary images are then used for the exploration of spatial and temporal characteristics of cloud dynamics, and subsequently for the simulation of cloud-free composite availability with various revisiting intervals of optical sensors. Using Canada's southern provinces as an application case, the study explored several factors important for the design of environmental monitoring system using optical sensors of earth observation, in particular, cloud dynamics and its inter-annual variability, sensors’ revisiting intervals, and cloud-free threshold for targeting composites. While the cloud images used in the analysis are at 1 km × 1 km resolution, our analysis suggests that the simulated availabilities of cloud-free image composites may also provide reasonable estimates for optical sensors with higher than 1 km × 1 km resolution, though the closer to 1 km × 1 km resolution the optical sensor, the more pertinent the application. Also, the methodology can be parameterised to different temporal period and different spatial region, depending on applications.  相似文献   

6.
随着土壤湿度与海水盐度卫星( SMOS)发射计划的顺利开展和AMSR -E(Advanced Microwave Scanning Radiometer- Earth Observing System)业务化运行服务之后,人类用星载微波辐射计监测土壤水分是空间技术上的又一次飞跃,但土壤水分的反演精度受到微波辐射计低空间...  相似文献   

7.
Similar to vascular plants, non-vascular plant mosses have different periods of seasonal growth. There has been little research on the spectral variations of moss soil crust (MSC) over different growth periods. Few studies have paid attention to the difference in spectral characteristics between wet MSC that is photosynthesizing and dry MSC in suspended metabolism. The dissimilarity of MSC spectra in wet and dry conditions during different seasons needs further investigation. In this study, the spectral reflectance of wet MSC, dry MSC and the dominant vascular plant (Artemisia) were characterized in situ during the summer (July) and autumn (September). The variations in the normalized difference vegetation index (NDVI), biological soil crust index (BSCI) and CI (crust index) in different seasons and under different soil moisture conditions were also analyzed. It was found that (1) the spectral characteristics of both wet and dry MSCs varied seasonally; (2) the spectral features of wet MSC appear similar to those of the vascular plant, Artemisia, whether in summer or autumn; (3) both in summer and in autumn, much higher NDVI values were acquired for wet than for dry MSC (0.6  0.7 vs. 0.3  0.4 units), which may lead to misinterpretation of vegetation dynamics in the presence of MSC and with the variations in rainfall occurring in arid and semi-arid zones; and (4) the BSCI and CI values of wet MSC were close to that of Artemisia in both summer and autumn, indicating that BSCI and CI could barely differentiate between the wet MSC and Artemisia.  相似文献   

8.
In this study, the NIR-red spectral space of Landsat-8 images, which is manifested by a triangle shape, is deployed for developing two new Soil Moisture (SM) indices. First, ten parameters consisting of six distances and four angles were extracted using the position of a random pixel in this triangle. Then, some correlation assessments were made to derive those parameters that were useful for SM estimation, which were five parameters. To build a soil moisture index, all combinations of these five parameters, which were in total 31 different regression equations, were considered, and the best model was named the Triangle Soil Moisture Index (TSMI). The TSMI consists of three parameters. It showed a RMSE of 0.08 and correlation coefficient (R) of 0.67. Since the TSMI does not consider vegetation interface in SM estimation, the Modified TSMI (MTSMI), which takes into account the fraction of soil cover in each pixel, beside those parameters which were used in the TSMI, was developed (MTSMI: RMSE = 0.07, R = 0.74). The results of the TSMI and MTSMI were compared with each other, and with another soil moisture index (SMMRS introduced by Zhan et al. (2007)). It was concluded that the TSMI and MTSMI provide similar results for bare soil or sparsely vegetated surfaces. However, the MTSMI demonstrated a much better performance in densely vegetated surfaces. The accuracy of both the TSMI and MTSMI were significantly higher than the SMMRS. Moreover, the TSMI and MTSMI were validated by comparison with field measured SM data at five different depths. The results showed that satellite estimated SM by these two indices was more correlated with in situ data at 5 cm soil depth compared to other depths. Also, to show the high applicability of the proposed approach for SM estimation, we selected another set of field SM data collected in Australia. The results proved the effectiveness of the method in different study areas.  相似文献   

9.
The Swiss Federal Institute for Snow and Avalanche Research in Davos (SLF) provides snow depth maps for Switzerland on a spatial resolution of 1 km × 1 km. These snow depth maps are derived from snow station measurements using a spatial interpolation method based on the dependency of snow depth and altitude. During a winter season the number of operating snow stations varies and the area-wide snow depth interpolation becomes increasingly difficult in spring. The objective of the study is to develop an operational and near-real time method to calculate snow depth maps using a combination of in situ snow depth measurements and the snow cover extent provided from space borne observations. The operational daily snow cover product obtained from the polar-orbiting NOAA-AVHRR satellite is used to gain an additional set of virtual snow stations to densify the in situ measurements for an improved spatial interpolation. The capacity of this method is demonstrated on selected days during winter 2005. Cross-validation tests are conducted to examine the quantitative accuracy of the synergetic interpolation method. The error estimators prove the decrease in error variance and increase of overall accuracy pointing out the high capacity of this new interpolation method that can be run in near real-time over a large horizontal domain at high horizontal resolution. A solid method for snow–no snow classification in the processing of the satellite data is essential to the quality of the snow depth maps.  相似文献   

10.
Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.  相似文献   

11.
The QuikSCAT enhanced (2.225-km) backscattering product is investigated for sensitivity to changes in soil moisture and its potential for spatial disaggregation of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture. Specifically, an active–passive methodology based on temporal change detection is tested using data from the 2006 National Airborne Field Experiment data set. This campaign was carried out from October 29 to November 20, 2006 in a 60 km $times$ 40 km area of the Murrumbidgee catchment, southeast Australia. Temporal change detection analysis and accuracy in terms of spatial pattern distribution throughout the domain were assessed using a passive microwave airborne product derived from the Polarimetric L-band Multibeam Radiometer at 1-km spatial resolution. QuikSCAT–AMSR-E intercomparisons indicated higher correlations when using C-band observations. The greatest sensitivity to soil moisture was observed when using V-polarized backscatter measurement. While backscattering data showed adequate temporal sensitivity to changes in soil moisture due to precipitation events, the spatial agreement was complicated by the presence of irrigation and standing water (rice fields). This resulted in low Cramer's Phi values (less than 0.06), which were used as a measure of spatial correspondence in terms of change in soil moisture and backscatter. In addition, the high QuikSCAT sensor frequency and existence of noise in the observed data contributed to the observed discrepancies.   相似文献   

12.
Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).  相似文献   

13.
The land surface temperature (LST) is an important parameter when studying the interface between the atmosphere and the Earth's surface. Compared to satellite thermal infrared (TIR) remote sensing, passive microwave (PMW) remote sensing is better able to overcome atmospheric influences and to estimate the LST, especially in cloudy regions. However, methods for estimating PMW LSTs at the country and continental scales are still rare. The necessity of training such methods from a temporally dynamic perspective also needs further investigations. Here, a temporally land cover based look-up table (TL-LUT) method is proposed to estimate the LSTs from AMSR-E data over the Chinese landmass. In this method, the synergies between observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS), which are onboard the same Aqua satellite, are explored. Validation with the synchronous MODIS LSTs demonstrates that the TL-LUT method has better performances in retrieving LSTs with AMSR-E data than the method that uses a single brightness temperature in 36.5 GHz vertical polarization channel. The accuracy of the TL-LUT method is better than 2.7 K for forest and 3.2 K for cropland. Its accuracy varies according to land cover type, time of day, and season. When compared with the in-situ measured LSTs at four sites without urban warming in the Tibet Plateau, the standard errors of estimation between the estimated AMSR-E LST and in-situ measured LST are from 5.1 K to 6.0 K in the daytime and 3.1 K to 4.5 K in the nighttime. Further comparison with the in-situ measured air temperatures at 24 meteorological stations confirms the good performance of the TL-LUT method. The feasibility of PMW remote sensing in estimating the LST for China can complement the TIR data and can, therefore, aid in the generation of daily LST maps for the entire country. Further study of the penetration of PMW radiation would benefit the LST estimations in barren and other sparsely vegetated environments.  相似文献   

14.
Monitoring of temporal and spatial soil moisture variability is an important issue, both from practical and scientific point of view. It is well known that passive, L-band, radiometric measurements provide best soil moisture estimates. Unfortunately as it was observed during Soil Moisture and Ocean Salinity (SMOS) mission, which was specially dedicated to measure soil moisture, these measurements suffer significant data loss. It is caused mainly by radio frequency interference (RFI) which strongly contaminates Central Europe and even in particularly unfavorable conditions, might prevent these data from being used for regional or watershed scale analysis. Nevertheless, it is highly awaited by researchers to receive statistically significant information on soil moisture over the area of a big watershed. One of such watersheds, the Odra (Oder) river watershed, lies in three European countries – Poland, Germany and the Czech Republic. The area of the Odra river watershed is equal to 118,861 km2 making it the second most important river in Poland as well as one of the most significant one in Central Europe.This paper examines the SMOS soil moisture data in the Odra river watershed in the period from 2010 to 2012. This attempt was made to check the possibility of assessing, from the low spatial resolution observations of SMOS, useful information that could be exploited for practical aims in watershed scale, for example, in water storage models even while moderate RFI takes place. Such studies, performed over the area of a large watershed, were recommended by researchers in order to obtain statistically significant results. To meet these expectations, Centre Aval de Traitement des Donnes SMOS (CATDS), 3-days averaged data, together with Global Land Data Assimilation System (GLDAS) National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab (NOAH) model 0.25 soil moisture values were used for statistical analyses and mutual comparisons.The results obtained using various statistical tools unveil high scientific potential of CATDS SMOS data to study soil moisture over the Odra river watershed. This was also confirmed by reasonable agreement between results derived from CATDS SMOS Ascending and GLDAS data sets. This agreement was achieved mainly by using these data spatially averaged over the whole watershed area, and for observations performed in the period longer than three-day averaging time. Comparisons of separate three-day data in a given pixel position, or at smaller areas would be difficult because of data gaps. Hence, the results of the work suggest that despite of RFI interferences, SMOS observations can provide effective input for analysis of soil moisture at regional scales. Moreover, it was shown that CATDS SMOS soil moisture data are better correlated with rainfall rate than GLDAS ones.  相似文献   

15.
For the soil moisture retrieval from passive microwave sensors, such as ESA’s Soil Moisture and Ocean Salinity (SMOS) and the NASA Soil Moisture Active and Passive (SMAP) mission, a good knowledge about the vegetation characteristics is indispensable. Vegetation cover is a principal factor in the attenuation, scattering and absorption of the microwave emissions from the soil; and has a direct impact on the brightness temperature by way of its canopy emissions. Here, brightness temperatures were measured at three altitudes across the TERENO (Terrestrial Environmental Observatories) Rur catchment site in Germany to achieve a range of spatial resolutions using the airborne Polarimetric L-band Multibeam Radiometer 2 (PLMR2). The L-band Microwave Emission of the Biosphere (L-MEB) model which simulates microwave emissions from the soil–vegetation layer at L-band was used to retrieve surface soil moisture for all resolutions. A Monte Carlo approach was developed to simultaneously estimate soil moisture and the vegetation parameter b’ describing the relationship between the optical thickness τ and the Leaf Area Index (LAI). LAI was retrieved from multispectral RapidEye imagery and the plant specific vegetation parameter b′ was estimated from the lowest flight altitude data for crop, grass, coniferous forest, and deciduous forest. Mean values of b’ were found to be 0.18, 0.07, 0.26 and 0.23, respectively. By assigning the estimated b′ to higher flight altitude data sets, a high accuracy soil moisture retrieval was achieved with a Root Mean Square Difference (RMSD) of 0.035 m3 m−3 when compared to ground-based measurements.  相似文献   

16.
Soil salinization is a worldwide environmental problem with severe economic and social consequences. In this paper, estimating the soil salinity of Pingluo County, China by a partial least squares regression (PLSR) predictive model was carried out using QuickBird data and soil reflectance spectra. At first, a relationship between the sensitive bands of soil salinity acquired from measured reflectance spectra and the spectral coverage of seven commonly used optical sensors was analyzed. Secondly, the potentiality of QuickBird data in estimating soil salinity by analyzing the correlations between the measured reflectance spectra and reflectance spectra derived from QuickBird data and analyzing the contributions of each band of QuickBird data to soil salinity estimation Finally, a PLSR predictive model of soil salinity was developed using reflectance spectra from QuickBird data and eight spectral indices derived from QuickBird data. The results indicated that the sensitive bands covered several bands of each optical sensor and these sensors can be used for soil salinity estimation. The result of estimation model showed that an accurate prediction of soil salinity can be made based on the PLSR method (R2 = 0.992, RMSE = 0.195). The PLSR model's performance was better than that of the stepwise multiple regression (SMR) method. The results also indicated that using spectral indices such as intensity within spectral bands (Int1, Int2), soil salinity indices (SI1, SI2, SI3), the brightness index (BI), the normalized difference vegetation index (NDVI) and the ratio vegetation index (RVI) as independent model variables can help to increase the accuracy of soil salinity mapping. The NDVI and RVI can help to reduce the influences of vegetation cover and soil moisture on prediction accuracy. The method developed in this paper can be applied in other arid and semi-arid areas, such as western China.  相似文献   

17.
Soil respiration (Rs) data from 45 plots were used to estimate the spatial patterns of Rs during the peak growing seasons of winter wheat and summer maize in Julu County, North China, by combining satellite remote sensing data, field-measured data, and a support vector regression (SVR) model. The observed Rs values were well reproduced by the model at the plot scale, with a root-mean-square error (RMSE) of 0.31 μmol CO2 m−2 s−1 and a coefficient of determination (R2) of 0.73. No significant difference was detected between the prediction accuracy of the SVR model for winter wheat and summer maize. With forcing from satellite remote sensing data and gridded soil property data, we used the SVR model to predict the spatial distributions of Rs during the peak growing seasons of winter wheat and summer maize rotation croplands in Julu County. The SVR model captured the spatial variations of Rs at the county scale. The satellite-derived enhanced vegetation index was found to be the most important input used to predict Rs. Removal of this variable caused an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.42 μmol CO2 m−2 s−1. Soil properties such as soil organic carbon (SOC) content and soil bulk density (SBD) were the second most important factors. Their removal led to an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.37 μmol CO2 m−2 s−1. The SVR model performed better than multiple regression in predicting spatial variations of Rs in winter wheat and summer maize rotation croplands, as shown by the comparison of the R2 and RMSE values of the two algorithms. The spatial patterns of Rs are better captured using the SVR model than performing multiple regression, particularly for the relatively high and relatively low Rs values at the center and northeast study areas. Therefore, SVR shows promise for predicting spatial variations of Rs values on the basis of remotely sensed data and gridded soil property data at the county scale.  相似文献   

18.
A new approach to estimate soil moisture (SM) based on evaporative fraction (EF) retrieved from optical/thermal infrared MODIS data is presented for Canadian Prairies in parts of Saskatchewan and Alberta. An EF model using the remotely sensed land surface temperature (Ts)/vegetation index concept was modified by incorporating North American Regional Reanalysis (NAAR) Ta data and used for SM estimation. Two different combinations of temperature and vegetation fraction using the difference between Ts from MODIS Aqua and Terra images and Ta from NARR data (Ts−Ta Aqua-day and Ts−Ta Terra-day, respectively) were proposed and the results were compared with those obtained from a previously improved model (ΔTs Aqua-DayNight) as a reference. For the estimation of SM from EF, two empirical models were tested and discussed to find the most appropriate model for converting MODIS-derived EF data to SM values. Estimated SM values were then correlated with in situ SM measurements and their relationships were statistically analyzed. Results indicated statistically significant correlations between SM estimated from all three EF estimation approaches and field measured SM values (R2 = 0.42–0.77, p values < 0.04) exhibiting the possibility to estimate SM from remotely sensed EF models. The proposed Ts−Ta MODIS Aqua-day and Terra-day approaches resulted in better estimations of SM (on average higher R2 values and similar RMSEs) as compared with the ΔTs reference approach indicating that the concept of incorporating NARR Ta data into Ts/Vegetation index model improved soil moisture estimation accuracy based on evaporative fraction. The accuracies of the predictions were found to be considerably better for intermediate SM values (from 12 to 22 vol/vol%) with square errors averaging below 11 (vol/vol%)2. This indicates that the model needs further improvements to account for extreme soil moisture conditions. The findings of this research can be potentially used to downscale SM estimations obtained from passive microwave remote sensing techniques.  相似文献   

19.
This paper presents a technique developed for the retrieval of the orientation of crop rows, over anthropic lands dedicated to agriculture in order to further improve estimate of crop production and soil erosion management. Five crop types are considered: wheat, barley, rapeseed, sunflower, corn and hemp. The study is part of the multi-sensor crop-monitoring experiment, conducted in 2010 throughout the agricultural season (MCM’10) over an area located in southwestern France, near Toulouse. The proposed methodology is based on the use of satellite images acquired by Formosat-2, at high spatial resolution in panchromatic and multispectral modes (with spatial resolution of 2 and 8 m, respectively). Orientations are derived and evaluated for each image and for each plot, using directional spatial filters (45° and 135°) and mathematical morphology algorithms. “Single-date” and “multi-temporal” approaches are considered. The single-date analyses confirm the good performances of the proposed method, but emphasize the limitation of the approach for estimating the crop row orientation over the whole landscape with only one date. The multi-date analyses allow (1) determining the most suitable agricultural period for the detection of the row orientations, and (2) extending the estimation to the entire footprint of the study area. For the winter crops (wheat, barley and rapeseed), best results are obtained with images acquired just after harvest, when surfaces are covered by stubbles or during the period of deep tillage (0.27 > R2 > 0.99 and 7.15° > RMSE > 43.02°). For the summer crops (sunflower, corn and hemp), results are strongly crop and date dependents (0 > R2 > 0.96, 10.22° > RMSE > 80°), with a well-marked impact of flowering, irrigation equipment and/or maximum crop development. Last, the extent of the method to the whole studied zone allows mapping 90% of the crop row orientations (more than 45,000 ha) with an error inferior to 40°, associated to a confidence index ranging from 1 to 5 for each agricultural plot.  相似文献   

20.
Monitoring the spring green-up date (GUD) has grown in importance for crop management and food security. However, most satellite-based GUD models are associated with a high degree of uncertainty when applied to croplands. In this study, we introduced an improved GUD algorithm to extract GUD data for 32 years (1982–2013) for the winter wheat croplands on the North China Plain (NCP), using the third-generation normalized difference vegetation index form Global Inventory Modeling and Mapping Studies (GIMMS3g NDVI). The spatial and temporal variations in GUD with the effects of the pre-season climate and soil moisture conditions on GUD were comprehensively investigated. Our results showed that a higher correlation coefficient (r = 0.44, p < 0.01) and lower root mean square error (22 days) and bias (16 days) were observed in GUD from the improved algorithm relative to GUD from the MCD12Q2 phenology product. In spatial terms, GUD increased from the southwest (less than day of year (DOY) 60) to the northeast (more than DOY 90) of the NCP, which corresponded to spatial reductions in temperature and precipitation. GUD advanced in most (78%) of the winter wheat area on the NCP, with significant advances in 37.8% of the area (p < 0.05). GUD occurred later at high altitudes and in coastal areas than in inland areas. At the interannual scale, the average GUD advanced from DOY 76.9 in the 1980s (average 1982–1989) to DOY 73.2 in the 1990s (average 1991–1999), and to DOY 70.3 after 2000 (average 2000–2013), indicating an average advance of 1.8 days/decade (r = 0.35, p < 0.05). Although GUD is mainly controlled by the pre-season temperature, our findings underline that the effect of the pre-season soil moisture on GUD should also be considered. The improved GUD algorithm and satellite-based long-term GUD data are helpful for improving the representation of GUD in terrestrial ecosystem models and enhancing crop management efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号