共查询到20条相似文献,搜索用时 81 毫秒
1.
集合Kalman滤波在土壤湿度同化中的应用 总被引:6,自引:4,他引:6
基于非饱和土壤水模型和集合卡尔曼滤波 (Ensemble Kalman Filter, 简称EnKF) 并结合陆面水文模型——可变下渗能力模型 (Variable Infiltration Capacity, 简称VIC模型) 发展了一个土壤湿度同化方案。利用1998年6~8月淮河流域能量和水循环试验 (HUBEX) 项目外场观测试验区——史灌河流域梅山站土壤湿度逐日观测资料及1986~1993年合肥和南阳两站点的土壤湿度旬观测资料进行同化试验, 结果表明该同化方案能完整估计土壤湿度廓线, 同化的土壤湿度与观测资料基本吻合, 反映了土壤湿度的日、 旬、 月、 季变化, 同化方案是合理的。与基于扩展卡尔曼滤波 (Extended Kalman Filter, 简称EKF) 的土壤湿度同化方案的结果比较, 基于EnKF的土壤湿度同化方案易于实现, 且通过选择恰当的集合样本数其同化效果总体上略优于EKF同化方案, 但前者同化时需要花费较多的计算时间。 相似文献
2.
AMSR-E土壤湿度产品在锡林浩特草地样区的精度验证 总被引:1,自引:0,他引:1
AMSR-E土壤湿度产品已逐渐应用于气象,农业等各个领域,对土壤湿度的研究,特别是干旱半干旱地区,有着重要的科研和现实意义.为了验证AMSR-E土壤湿度产品在锡林浩特草地的适用性,利用锡林浩特草地野外实验,在3 km×3km范围内,与同经纬度地面9个点的2 cm土壤体积含水量数据作产品精度验证.通过与降水量的比较,验证了AMSR-E土壤湿度产品的可靠性,通过与地面实测值的比较,验证结果表明,AMSR-E反演的平均土壤体积含水量与地面实测平均土壤体积含水量分别为13.3%和11.8%,两者土壤体积含水量的RMSE为3.7%. 相似文献
3.
AMSR-E卫星亮度温度数据在高原东北部土壤湿度观测和模拟中的应用 总被引:3,自引:0,他引:3
为了改进青藏高原东北部土壤湿度的观测和模拟效果,利用AMSR-E(Advanced Microwave Scanning Radiometer-EOS)亮度温度资料,估算了高原东北部的土壤湿度值;还利用耦合了Noah陆面模型的WRF中尺度模式WRF-Noah,结合牛顿松驰逼近同化法对AMSR-E估算的土壤湿度进行了同化试验。结果表明:与实测及NCEP再分析值土壤湿度相比,估算的高原东北部的土壤湿度值虽小些,但能够体现土壤湿度随降水事件等的影响。使用牛顿松弛逼近法同化后比没有同化或采用直接替代法模拟的土壤湿度的效果要好。在区域尺度上,通过对牛顿松弛逼近法中质量因子的详细控制,采用该同化方法后对沙漠地区土壤湿度的模拟改善最为明显,其次是草地以及灌木丛与草地混合区;在时间尺度上,采用牛顿松弛逼近同化方法后模拟值与实测值的均方根误差得到减少。 相似文献
4.
本文主要目的是探讨不同模式误差方案在土壤湿度同化中的性能。基于集合Kalman滤波同化方法和AVIM (Atmosphere-Vegetation Interaction Model) 陆面模式, 利用理想试验对膨胀因子方案 (Covariance Inflation, 简称CI)、 直接随机扰动方案 (Direct Random Disturbance, 简称DRD)、 误差源扰动方案 (Source Random Disturbance, 简称SRD) 等3种模式误差方案的同化效果进行了比较, 讨论了各方案在不同观测误差、 观测层数、 观测间隔情况下的同化性能。试验结果表明在观测误差估计完全准确的情况下, 3种方案都能获得较好的同化效果, 并且SRD方案相对于真值的均方根误差最小。当观测误差估计不准确时, SRD方案的同化效果仍能基本得以保持, 而CI和DRD方案则对观测误差估计更为敏感, 同化效果下降明显。当同化多层观测时, CI和DRD方案由于难以保持不同层观测之间的匹配关系, 同化结果反而变差, 而SRD方案能有效协调同化多层观测, 增加观测层后同化结果有了进一步的改善。当观测时间间隔较大时, CI和DRD方案的同化效果显著下降; 而SRD方案由于包含了一定的误差订正功能, 在观测稀疏时仍能保持较好的同化效果。 相似文献
5.
基于集合卡尔曼滤波的土壤水分同化试验 总被引:20,自引:2,他引:20
集合卡尔曼滤波是由大气数据同化发展的新的顺序同化算法,它利用蒙特卡罗方法计算背景场的误差协方差矩阵,克服了卡尔曼滤波需要线性化的模型算子和观测算子的难点。我们发展了一个基于集合卡尔曼滤波和简单生物圈模型(SiB2,Simple Biosphere Model)的单点陆面数据同化方案。利用1998年7月6日至8月9日青藏高原GAME-Tibet实验区MS3608站点的观测数据进行了同化试验。结果表明,利用集合卡尔曼滤波的数据同化方法可以明显地提高表层、根区、深层土壤水分的估算精度。 相似文献
6.
集合卡尔曼滤波数据同化在一维波动方程中的应用 总被引:3,自引:0,他引:3
简要回顾了集合卡尔曼滤波(EnKF:Ensemble Kalman Filter)数据同化方法的发展历史,并介绍了EnKF数据同化方法的基本原理,利用一维非线性波动方程进行了数值试验。EnKF数据同化方法的实现过程简单可行。避免了EKF中协方差演变方程预报过程中出现的计算不准确和关于协方差矩阵的大量数据的存储问题,最主要的是EnKF可以有效控制模式变量估计误差方差的增长,改善预报效果。 相似文献
7.
目前,集合卡尔曼滤波同化预报循环系统主要的计算量和时间都花费在样本成员的预报上,小样本数虽能减少计算量,但样本数过少,特别是当有模式误差时,又会导致滤波发散。为了提高集合卡尔曼滤波同化预报循环系统的效率并减轻滤波发散等问题,开展了基于WRF的时间扩展取样集合卡尔曼滤波同化模拟探空的试验研究,以考察其在中尺度模式中的同化效果。预报时对一组样本数为Nb的样本,不仅在分析时刻取样,同时也在分析时刻前和后每间隔Δt时间进行M次取样,即在没增加预报样本数的情况下,增加了分析样本成员数(Nb+2M×Nb),从而在保证不降低分析精度的前提下,也达到减小集合卡尔曼滤波的计算量的要求。通过一系列试验来检验时间扩展取样的时间间隔Δt及在分析时刻前和后最大取样次数M对同化结果的影响。试验结果表明,当选择合适的Δt和M时,时间扩展集合卡尔曼滤波的同化效果非常接近于样本数为(1+2M)×Nb的传统集合卡尔曼滤波效果,具有一定的可行性。 相似文献
8.
集合卡尔曼滤波同化探空资料的数值试验 总被引:3,自引:1,他引:3
应用集合卡尔曼滤波(Ensemble Kalman Filter;EnKF)方法,同化了2005年7月一次暴雨过程的探空观测资料,并用非静力中尺度模式MM5进行数值模拟试验。结果表明:在理想模式的假设下,即假设真实模拟和所产生的集合用的是同一个模式并有相同的初始误差,EnKF方法同化的分析结果较好。如果不运用EnKF方法同化探空观测资料,则集合预报结果和不加扰动的单个数值预报结果都没有EnKF方法同化过的好。 相似文献
9.
本文将集合卡尔曼滤波同化技术应用到对流尺度系统中,实施了基于WRF模式的同化单部多普勒雷达径向风和反射率因子的观测系统模拟试验,验证了其在对流尺度中应用的可行性和有效性,并对同化系统的特性进行了探讨。试验表明:WRF-EnKF雷达资料同化系统能较准确分析模式风暴的流场、热力场、微物理量场的细致特征;几乎所有变量的预报和分析误差经过同化循环后都能显著下降,同化分析基本上能使预报场在各层上都有所改进,对预报场误差较大层次的更正更为显著;约8个同化循环后,EnKF能在雷达反射率、径向风观测与背景场间建立较可靠的相关关系,使模式各变量场能被准确分析更新,背景场误差协方差在水平方向和垂直方向都有着复杂的结构,是高度非均匀、各项异性和流依赖的;集合平均分析场做的确定性预报在短时间内能较好保持真值场风暴的细节结构,但预报误差增长较快。 相似文献
10.
为检验臭氧卫星资料同化对臭氧分析场和预报场的影响,基于集合平方根滤波(ENSRF)理论,结合通用地球系统模式(CESM),构建了CESM-ENSRF同化预报系统。系统构建过程考虑了卡尔曼滤波同化中的关键问题:利用全场随机扰动对初始场加扰,结合一般协方差膨胀和松弛协方差膨胀方法实现协方差膨胀,使用五阶距离相关函数进行协方差局地化。将构建的系统用于微波临边探测器(MLS)臭氧廓线数据的同化,分析臭氧卫星资料同化对模式预报的影响。结果表明:构建的CESM-ENSRF同化系统有效实现了臭氧资料同化,臭氧卫星资料同化对臭氧分析场和预报场精度有较大改进。 相似文献
11.
With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated by two different algorithms: the Simple Model Average (SMA) and the Weighted Average Method (WAM). The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically-generated and actual near-surface soil moisture measurements. The results from the synthetic experiment show that the performances of the SMA and WAM algorithms were quite different. The SMA algorithm did not help to improve the estimates of soil moisture at the deep layers, although its performance was not the worst when compared with the results from the single-model EnKF. On the contrary, the results from the WAM algorithm were better than those from any single-model EnKF. The tested results from assimilating the field measurements show that the performance of the two multimodel EnKF algorithms was very stable compared with the single-model EnKF. Although comparisons could only be made at three shallow layers, on average, the performance of the WAM algorithm was still slightly better than that of the SMA algorithm. As a result, the WAM algorithm should be adopted to approximate the multimodel background superensemble error covariance and hence used to estimate soil moisture states at the relatively deep layers. 相似文献
12.
In the Ensemble Kalman Filter (EnKF) data assimilation-prediction system, most of the computationtime is spent on the prediction runs of ensemble members. A limited or small ensemble size does reduce thecomputational cost, but an excessively small ensemble size usually leads to filter divergence, especially whenthere are model errors. In order to improve the efficiency of the EnKF data assimilation-prediction systemand prevent it against filter divergence, a time-expanded sampling approach for EnKF based on the WRF(Weather Research and Forecasting) model is used to assimilate simulated sounding data. The approachsamples a series of perturbed state vectors from Nb member prediction runs not only at the analysis time(as the conventional approach does) but also at equally separated time levels (time interval is △t) beforeand after the analysis time with M times. All the above sampled state vectors are used to construct theensemble and compute the background covariance for the analysis, so the ensemble size is increased fromNb to Nb+2M£Nb=(1+2M)×Nb) without increasing the number of prediction runs (it is still Nb). Thisreduces the computational cost. A series of experiments are conducted to investigate the impact of △t (thetime interval of time-expanded sampling) and M (the maximum sampling times) on the analysis. The resultsshow that if △t and M are properly selected, the time-expanded sampling approach achieves the similareffect to that from the conventional approach with an ensemble size of (1+2M)×Nb, but the number ofprediction runs is greatly reduced. 相似文献
13.
Bangjun CAO Fuping MAO Shuwen ZHANG Shaoying LI Tian WANG 《Journal of Meteorological Research》2019,(3):519-527
The performance of separate bias Kalman filter (SepKF) in correcting the model bias for the improvement of soil moisture profiles is evaluated by assimilating the near-surface soil moisture observations into a land surface model (LSM). First, an observing system simulation experiment (OSSE) is carried out, where the true soil moisture is known, two types of model bias (i.e., constant and sinusoidal) are specified, and the bias error covariance matrix is assumed to be proportional to the model forecast error covariance matrix with a ratio λ. Second, a real assimilation experiment is carried out with measurements at a site over Northwest China. In the OSSE, the soil moisture estimation with the SepKF is improved compared with ensemble Kalman filter (EnKF) without the bias filter, because SepKF can properly correct the model bias, especially in the situation with a large model bias. However, the performance of SepKF becomes slightly worse if the constant model bias increases or temporal variability of the sinusoidal model bias becomes large. It is suggested that the ratio λ should be increased (decreased) in order to improve the soil moisture estimation if temporal variability of the sinusoidal model bias becomes high (low). Finally, the assimilation experiment with real observations also shows that SepKF can further improve the estimation of soil moisture profiles compared with EnKF without the bias correction. 相似文献
14.
Kefeng ZHU Ming XUE Yujie PAN Ming HU Stanley G. BENJAMIN Stephen S. WEYGANDT Haidao LIN 《大气科学进展》2019,36(12):1308-1326
A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous threehourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements(RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours. 相似文献
15.
集合卡尔曼滤波 (the Ensemble Kalman Filter,简称EnKF) 中将预报集合的统计协方差作为预报误差协方差,但该估计可能严重偏离真实的预报误差协方差,影响同化精度。基于极大似然估计理论,发展了一种优化预报误差协方差矩阵的实时膨胀方法,即MLE (the Maximum Likelihood Estimation) 方法。利用蒙古国基准站Delgertsgot (简称DGS站) 观测资料,基于EnKF方法和MLE方法,在通用陆面模式 (the Common Land Model,简称CoLM) 中同化了地表温度和10 cm土壤温度观测资料,建立了土壤温度同化系统。结果表明:MLE方法对地表温度和各层土壤温度 (尤其深层土壤温度) 的估计比EnKF方法准确。考虑到浅层和深层土壤温度的差别,在实施MLE方法时对浅层和深层土壤温度采用了不同的膨胀因子。对比膨胀因子为单一标量时的结果,多因子膨胀能缓解深层土壤温度的不合理膨胀,改善同化效果。 相似文献
16.
《大气与海洋》2012,50(4):129-145
In the ensemble Kalman filter (EnKF), ensemble size is one of the key factors that significantly affects the performance of a data assimilation system. A relatively small ensemble size often must be chosen because of the limitations of computational resources, which often biases the estimation of the background error covariance matrix. This is an issue of particular concern in Argo data assimilation, where the most complex state-of-the-art models are often used. In this study, we propose a time-averaged covariance method to estimate the background error covariance matrix. This method assumes that the statistical properties of the background errors do not change significantly at neighbouring analysis steps during a short time window, allowing the ensembles generated at previous steps to be used in present steps. As such, a joint ensemble matrix combining ensembles of previous and present steps can be constructed to form a larger ensemble for estimating the background error covariance. This method can enlarge the ensemble size without increasing the number of model integrations, and this method is equivalent to estimating the background error covariance matrix using the mean ensemble covariance averaged over several assimilation steps. We apply this method to the assimilation of Argo and altimetry datasets with an oceanic general circulation model. Experiments show that the use of this time-averaged covariance can improve the performance of the EnKF by reducing the root mean square error (RMSE) and improving the estimation of error covariance structure as well as the relationship between ensemble spread and RMSE. RÉSUMÉ [Traduit par la rédaction] Dans le filtre de Kalman d'ensemble (EnKF), la taille de l'ensemble est l'un des facteurs clés qui ont une influence importante sur la performance d'un système d'assimilation de données. Il faut souvent choisir une taille d'ensemble assez petite à cause des limites des ressources informatiques, ce qui biaise souvent l'estimation de la matrice de covariance de l'erreur de fond. Cette question revêt une importance particulière pour l'assimilation des données Argo, qui fait souvent appel à des modèles de pointe très complexes. Dans cette étude, nous proposons une méthode de covariance moyennée dans le temps pour estimer la matrice de covariance de l'erreur de fond. Cette méthode suppose que les propriétés statistiques des erreurs de fond ne changent pas de façon importante d'une étape d'analyse à la suivante durant un court laps de temps, ce qui permet d'utiliser dans les étapes courantes les ensembles générés aux étapes précédentes. Ainsi, on peut construire une matrice d'ensembles conjoints combinant les ensembles des étapes précédentes et courantes pour former un plus grand ensemble dans le but d'estimer la covariance de l'erreur de fond. Cette méthode peut accroître la taille de l'ensemble sans augmenter le nombre d'intégrations du modèle; elle équivaut à estimer la matrice de covariance de l'erreur de fond en utilisant la covariance moyenne de l'ensemble calculée sur plusieurs étapes d'assimilation. Nous appliquons cette méthode à l'assimilation des ensembles de données Argo et d'altimétrie avec un modèle de circulation océanique générale. Des essais montrent que l'emploi de cette covariance moyennée dans le temps peut améliorer la performance de l'EnKF en réduisant l’écart-type et en améliorant l'estimation de la structure de la covariance de l'erreur de même que la relation entre l'étalement et l'écart-type l'ensemble. 相似文献
17.
Rong KONG;Ming XUE;Edward R.MANSELL;Chengsi LIU;Alexandre O.FIERRO 《大气科学进展》2024,41(2):263-277
Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter(GSI-EnKF) framework were previously developed and tested with a mesoscale convective system(MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational(EnVar) hybrid data assimilation(DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar(PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation. 相似文献
18.
卫星微波仪器接收的来自地气系统的被动热辐射与主动传感器发射的信号相混合,被称为无线电频率干扰 (RFI),在主动及被动微波遥感探测领域已成为越来越严重的问题。海洋表面反射的静止通讯、电视卫星下发信号是干扰海洋上星载被动微波辐射计观测的主要来源。该文以先进的微波扫描辐射计AMSR-E为例,采用双主成分分析方法对美国陆地上大面积水体、附近洋面和中国海岸线附近的RFI进行识别,研究表明:美国附近洋面区域星载微波辐射计18.7 GHz通道观测主要受静止电视卫星DirecTV的干扰,由于海表反射引起的RFI非常依赖于静止卫星和星载被动仪器的相对几何位置,只有当闪烁角θ(观测视场镜面反射的静止电视卫星信号方向与视场到星载仪器方向之间的夹角) 较小时卫星观测易受到污染。美国海洋区域较强RFI分布在五大湖区域,离内陆越近RFI越强,东西海岸RFI较强,而整个南海岸干扰相对较弱。中国海岸线附近AMSR-E 6.925 GHz通道观测受RFI影响,而18.7 GHz通道观测未受到干扰。 相似文献
19.
Land surface models are often highly nonlinear with model physics that contain parameterized discontinuities. These model attributes severely limit the application of advanced variational data assimilation methods into land data assimilation. The ensemble Kalman filter (EnKF) has been widely employed for land data assimilation because of its simple conceptual formulation and relative ease of implementation. An updated ensemble-based three-dimensional variational assimilation (En3-DVar) method is proposed for land data assimilation This new method incorporates Monte Carlo sampling strategies into the 3-D variational data assimilation framework. The proper orthogonal decomposition (POD) technique is used to efficiently approximate a forecast ensemble produced by the Monte Carlo method in a 3-D space that uses a set of base vectors that span the ensemble. The data assimilation process is thus significantly simplified. Our assimilation experiments indicate that this new En3-DVar method considerably outperforms the EnKF method by increasing assimilation precision. Furthermore, computational costs for the new En3-DVar method are much lower than for the EnKF method. 相似文献
20.
基于集合卡尔曼滤波(EnKF)方法同化模拟雷达径向风和回波,引入具有时空自适应理论优势的贝叶斯膨胀算法,通过与常数膨胀算法的对比,分析了两种协方差膨胀算法对EnKF同化效果的影响。结果表明:在对流区域的北侧,由贝叶斯膨胀算法分析得到的回波在水平和垂直结构上均增强;在对流区域,由贝叶斯膨胀算法分析得到的各变量的集合离散度增大,均方根误差减小,水平和垂直速度增大,冷池强度减弱;模拟还发现贝叶斯膨胀算法提高了强对流系统的模拟效果,回波强度增强,阵风锋区内水平和垂直风速增大。这表明贝叶斯膨胀算法有效地改进了基于常数膨胀算法的EnKF同化雷达资料的效果。 相似文献