共查询到20条相似文献,搜索用时 15 毫秒
1.
Gavin Ramsay Catherine Brocksopp Kinwah Wu Bruce Slee Curtis J. Saxton 《Monthly notices of the Royal Astronomical Society》2007,382(1):461-465
Unipolar induction (UI) is a fundamental physical process, which occurs when a conducting body transverses a magnetic field. It has been suggested that UI is operating in RX J0806+15 and RX J1914+24, which are believed to be ultracompact binaries with orbital periods of 5.4 and 9.6 min, respectively. The UI model predicts that those two sources may be electron cyclotron maser sources at radio wavelengths. Other systems in which UI has been predicted to occur are short period extrasolar terrestrial planets with conducting cores. If UI is present, circularly polarized radio emission is predicted to be emitted. We have searched for this predicted radio emission from short period binaries using the Very Large Array (VLA) and Australian Telescope Compact Array (ATCA). In one epoch, we find evidence for a radio source, coincident in position with the optical position of RX J0806+15. Although we cannot completely exclude that this is a chance alignment between the position of RX J0806+15 and an artefact in the data reduction process, the fact that it was detected at a significance level of 5.8σ and found to be transient suggests that it is more likely that RX J0806+15 is a transient radio source. We find an upper limit on the degree of circular polarization to be ∼50 per cent. The inferred brightness temperature exceeds 1018 K, which is too high for any known incoherent process, but is consistent with maser emission and UI being the driving mechanism. We did not detect radio emission from ES Cet, RX J1914+24 or Gliese 876. 相似文献
2.
A. Stupp 《Monthly notices of the Royal Astronomical Society》2000,311(2):251-268
We investigate wave amplification through the electron–cyclotron maser mechanism. We calculate absorption and emission coefficients without any approximations, also taking into account absorption by the ambient thermal plasma. A power-law energy distribution for the fast electrons is used, as indicated by X-ray and microwave observations.
We develop a model for the saturation length and amplification ratio of the maser, scan a large parameter space and calculate the absorption and emission coefficients for every frequency and angle.
Previous studies concluded that the unobservable Z mode dominates in the νp ≈ ν B region, and that millisecond spikes are produced in the region ν p ν B <0.25. We find that the observable O and X modes can produce emission in the 0.8< ν p ν B <2 region, which is expected at the footpoints of a flaring magnetic loop. The important criterion for observability is the saturation length and not the growth rate, as was assumed previously, and, even when the Z mode is the most strongly amplified, less strongly amplified O or X modes are still intense enough to be observed.
The brightness temperature computed with our model for the saturation length is found to be of order 1016 K and higher. The emission is usually at a frequency of 2.06 ν B , and at angles of 30°–60° to the magnetic field. The rise time of the amplified emission to maximum is a few tenths of a millisecond to a few milliseconds, and the emission persists for as long as new fast electrons arrive in the maser region. 相似文献
We develop a model for the saturation length and amplification ratio of the maser, scan a large parameter space and calculate the absorption and emission coefficients for every frequency and angle.
Previous studies concluded that the unobservable Z mode dominates in the ν
The brightness temperature computed with our model for the saturation length is found to be of order 10
3.
Loukas Vlahos 《Solar physics》1987,111(1):155-166
Energetic electrons, with energies 10–100 keV, accelerated during the impulsive phase of solar flares, sometimes encounter increasing magnetic fields as they stream towards the chromosphere. A consequence of the conservation of their magnetic moment is that the electrons with large initial pitch angle will be reflected at different heights from the atmosphere. Energetic electrons reflected below the transition zone will lose most of their energy to collisions and will never return to the corona. Thus, electrons reflected above the transition zone form a loss-cone velocity distribution which can be unstable to Electron Cyclotron Maser (ECM). The interaction of quasi-perpendicular shocks with the ambient coronal plasma will form a ‘ring’ or ‘hollow beam’ velocity distribution upstream of the shock. ‘Ring’ velocity distributions are also unstable to the ECM instability. A review of the recent results on the theory of ECM will be presented. We will focus our discussion on the questions: (a) What are the characteristics of the linear growth rate of the ECM during solar flares? (b) How does the ECM saturate and what is its efficiency? (c) How does the ECM generated radiation modify the flare environment? Finally we will review the outstanding questions in the theory of ECM and we will relate the theoretical predictions to current observations. 相似文献
4.
Rudolf A. Treumann 《Astronomy and Astrophysics Review》2006,13(4):229-315
The electron–cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron–cyclotron maser was considered as an alternative to turbulent though coherent wave–wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron–cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron–cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron–cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron–cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron–cyclotron maser is that in the electron–cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron–cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron–cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron–cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron–cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects. 相似文献
5.
In recent years radiation has been observed from planets, Sun and stars that is best explained by the cyclotron maser instability; in fact, all celestial bodies that might feasibly emit and be detected by their cyclotron maser radiation have been detected. Here we review those observations, the developments in the theory, the recent work on the effiency of energy transfer by cyclotron maser radiation, and some recent and future observations that might demonstrate whether the mechanism is energetically important in solar and stellar flares.
相似文献6.
In recent years radiation has been observed from planets, Sun and stars that is best explained by the cyclotron maser instability; in fact, all celestial bodies that might feasibly emit and be detected by their cyclotron maser radiation have been detected. Here we review those observations, the developments in the theory, the recent work on the effiency of energy transfer by cyclotron maser radiation, and some recent and future observations that might demonstrate whether the mechanism is energetically important in solar and stellar flares.This work was supported in part by NASA's Solar Heliospheric Physics and Solar Terrestrial Theory Programs under grants NSG-7287 and NAGW-91 to the University of Colorado. The numerical simulations were performed on the Cray XMP at the San Diego Supercomputer Center which is funded by the National Science Foundation. 相似文献
7.
Hong Wei Li 《Solar physics》1986,104(1):131-136
The variations of the growth rates of ECM at first four harmonics in X-, Z-, and O-modes excited by a hollow beam distribution of weakly relativistic electrons with a parameter
p
/
e
are presented in this paper. The results show that the second harmonic of ECM in X-mode dominates the instability if < 1, and if 1.2 , 2 or 2.2 3 the third or fourth harmonic will dominate. The second and third harmonics of Z-mode waves grow faster only if 2 2.2 and 3 3.2, respectively, so it would not be a competition in most cases. It is suggested that the ECM emission at these harmonics in X-mode is a possible mechanism to produce solar spike emissions with high brightness temperature at shorter and longer decimetric wavelengths.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.On leave from the Department of Astronomy, Nanjing University, Nanjing, The People's Republic of China. 相似文献
8.
M. D. Gray M. Wittkowski M. Scholz E. M. L. Humphreys K. Ohnaka D. Boboltz 《Monthly notices of the Royal Astronomical Society》2009,394(1):51-66
We describe a combined dynamic atmosphere and maser propagation model of SiO maser emission in Mira variables. This model rectifies many of the defects of an earlier model of this type, particularly in relation to the infrared (IR) radiation field generated by dust and various wavelength-dependent, optically thick layers. Modelled masers form in rings with radii consistent with those found in very long baseline interferometry (VLBI) observations and with earlier models. This agreement requires the adoption of a radio photosphere of radius approximately twice that of the stellar photosphere, in agreement with observations. A radio photosphere of this size renders invisible certain maser sites with high amplification at low radii, and conceals high-velocity shocks, which are absent in radio continuum observations. The SiO masers are brightest at an optical phase of 0.1–0.25, which is consistent with observed phase lags. Dust can have both mild and profound effects on the maser emission. Maser rings, a shock and the optically thick layer in the SiO pumping band at 8.13 μm appear to be closely associated in three out of four phase samples. 相似文献
9.
J.-K. Lee † A.J. Walsh‡ M.G. Burton M.C.B. Ashley 《Monthly notices of the Royal Astronomical Society》2001,324(4):1102-1108
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation. 相似文献
10.
11.
M. D. Gray R. J. Ivison E. M. L. Humphreys & J. A. Yates 《Monthly notices of the Royal Astronomical Society》1998,295(4):970-976
Building on the detection of the J =7–6 SiO maser emission in both the v =1 and v =2 vibrational states towards the symbiotic Mira R Aquarii, we have used the James Clerk Maxwell Telescope to study the changes in the SiO maser features from R Aqr over a stellar pulsational period. The observations, complemented by contemporaneous data taken at 86 GHz, represent a test of the popular thermal-instability clump models of SiO masers. The 'clump' model of SiO maser emission considers the SiO masers to be discrete emitting regions which differ from their surroundings in the values of one or more physical variables (SiO abundance, for example). We find that our observational data are consistent with a clump model in which the appearance of maser emission in the J =7–6 transitions coincides with an outward-moving shock impinging on the inner edge of the maser zone. 相似文献
12.
It has been argued that the loss-cone-driven electron cyclotron maser instability can account for the properties of millisecond microwave spike bursts observed during some solar flares. However, as it propagates outward from the corona, maser radiation undergoes gyroresonance absorption when its frequency is a harmonic of the local electron-cyclotron frequency. Existing analytical models using slab geometries predict that this absorption should be sufficiently strong to prevent the radiation from being seen at the observed levels, except under highly restrictive conditions or for unrealistic plasma parameters. A more comprehensive analysis is presented here to determine if and when maser radiation can escape to produce microwave spike bursts. This analysis employs numerical raytracing and incorporates propagation and absorption of fundamental maser emission in a realistic model of a coronal flux loop. It is found that ranges of physical conditions do exist under which maser radiation can escape to an observer and that these conditions are much more limiting for fundamental emission in the extraordinary ()-mode than in the ordinary (o)-mode. Detailed investigation implies that escaping radiation in the -mode is highly directional and chiefly observable toward the center of the solar disk, while escapingo-mode radiation is found to emerge from the corona over a much wider range of directions, with some cases corresponding to radiation observable near the solar limb. 相似文献
13.
P. A. Robinson 《Solar physics》1991,134(2):299-314
A new model is developed for electron-cyclotron maser emission from flaring loops, which incorporates competition between driving of the instability and maser-induced relaxation, together with interactions between small neighboring regions of unstable plasma. This results in a picture in which radiation is emitted in bursts from regions whose length scale is determined self-consistently by previous bursts, while the unstable plasma fluctuates about the point, close to marginal stability, at which driving of the instability is balanced by relaxation due to maser-induced electron diffusion. Under the conditions applicable to flaring loops, time scales of fundamental x-mode (x1) driving and saturation are approximately equal at 1 ms, resolving a (104–106)-fold discrepancy in previous models and agreeing with the observed time scales of microwave spike bursts. Saturation effects are found to be especially effective in suppressing amplification of the most strongly growing modes. This suppression enables fundamental o-mode (o1) and second-harmonic x-mode (x2) emission to compete more effectively against x1 emission for the available free energy than has previously been estimated. Consideration of mode competition, burst time scales, suppression of growth due to overlap between amplification and absorption bands, and escape of radiation through absorption layers to the observer, implies that the observed radiation probably escapes from the corona principally in the o-mode, either emitted directly as o1 radiation or mode converted from x1 emission. 相似文献
14.
S. Goedhart † D. J. van der Walt A. J. Schutte ‡ 《Monthly notices of the Royal Astronomical Society》2000,315(2):316-324
Near-infrared photometry was performed on 56 southern 6.7-GHz methanol maser sources. A simple spherically symmetric model of the radiative transfer through a dust shell was developed and used to study the conditions in the dust cloud in which the masers are produced. The parameters investigated were the size of the cloud, the spectral type of the embedded star, the optical depth of the dust cloud and the dust density distribution. It was found that the infrared colours of the models have a complex dependence on the parameters and that no unique combination of parameter values explains the spectral energy distribution of any particular source. The model effectively reproduces the far-infrared ( IRAS ) colours but cannot simultaneously explain the near-infrared colours for any of the observed sources. 相似文献
15.
M. D. Gray R. J. Cohen A. M. S. Richards J. A. Yates D. Field 《Monthly notices of the Royal Astronomical Society》2001,324(3):643-647
MERLIN observations are presented of OH 4765-MHz and OH 1720-MHz masers in the massive star-forming region W3(OH). Two of the three intense spots of maser emission at 4765 MHz are spatially coincident with two similar spots at 1720 MHz in both left-hand circular (LHC) and right-hand circular (RHC) polarizations, to an accuracy of 15 mas. The spots also overlap in velocity when allowance is made for Zeeman splitting of the 1720-MHz line. We conclude that we have found two examples of masers in different rotational levels of OH which are co-propagating through the same column of gas and experiencing competitive gain effects. The third 4765-MHz maser spot was found to have no overlapping counterpart amongst the 1720-MHz masers. 相似文献
16.
S.K. Mathew S.K. Solanki A. Lagg M. Collados S.V. Berdyugina C. Frutiger N. Krupp J. Woch 《Astronomische Nachrichten》2003,324(4):388-389
Analysis of spectral data of two neighboring infrared lines, Fe I 15648.5 Å (g = 3) and FeI 15652.9 Å (geff = 1.53) are carried out for a simple sunspot when it was near the solar disk center (μ = 0.92), to understand the basic structure of sunspot magnetic field. Inversions of Stokes profiles are carried out to derive different atmospheric parameters both as a function of location within the sunspot and height in the atmosphere. As a result of the inversion we have obtained maps of magnetic field strength, temperature, line‐of‐sight velocity, field inclination and azimuth for different optical depth layers between log(τ5) = 0 and log(τ5) = –2.0. In this paper we present few results from our inversion for a layer averaged between log(τ5) from 0.0 to –0.5. 相似文献
17.
Klaus Wilhelm Ingolf E. Dammasch Donald M. Hassler 《Astrophysics and Space Science》2002,282(1):189-207
The plasma conditions in the solar atmosphere and, in particular, in coronal holes are summarized, before space-borne instrumentation
for observing these regions in vacuum-ultraviolet light is briefly introduced with the Solar Ultraviolet Measurements of Emitted
Radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) as example. Spectroscopic measurements of
small plasma jets are then analyzed in detail. Magnetic reconnection is thought to be responsible for heating the corona of
the Sun as well as accelerating the solar wind by converting magnetic energy into thermal and kinetic energies. The continuous
outflow of the fast solar wind from coronal holes on ‘open’ field lines, which reach out into interplanetary space, then requires
many reconnection events of very small scale sizes – most of them probably below the resolution capabilities of present-day
instruments. Our observations of such an event have been obtained with the Solar and Heliospheric Observatory (SOHO) providing
both high-resolution imaging and spectral information for structural and dynamical studies. We find whirling or rotating motions
as well as jets with acceleration along their propagation paths in close spatial and temporal vicinity to the coronal jet.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
M. Szymczak A. J. Kus G. Hrynek 《Monthly notices of the Royal Astronomical Society》2000,312(1):211-216
We report observations of the 4765-MHz maser transition of OH (2 Π1/2 , J=1/2, F=1→0) towards 57 star-forming regions, taken with the 32-m Toruń telescope. Nine maser sources were detected, of which two had not been reported previously. The newly discovered sources in W75N and Cep A and four previously known sources were monitored over periods ranging from a few weeks to six months. Significant variations of the maser intensity occurred on time-scales of one week to two months. The relationships between the flux density and the linewidth for the new sources, established during the rise and fall phases of bursts that lasted 6–8 weeks, are consistent with a model of saturated masers. 相似文献
19.
20.
This paper presents observations of SiO maser emission from 161 Mira variables distributed over a wide range of intrinsic
parameters like spectral type, bolometric magnitude and amplitude of pulsation. The observations were made at 86.243 GHz,
using the 10-4 m millimeter-wave telescope of the Raman Research Institute at Bangalore, India. These are the first observations
made using this telescope. From these observations, we have established that the maser emission is restricted to Miras having
mean spectral types between M6 and M10. The infrared period-luminosity relation for Mira variables is used to calculate their
distances and hence estimate their maser luminosities from the observed fluxes. The maser luminosity is found to be correlated
with the bolometric magnitude of the Mira variable. On an H-R diagram, the masing Mira variables are shown to lie in a region
distinct from that for the non-masing ones. 相似文献