首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IMP-6 spacecraft observations of low frequency radio emission, fast electrons, and solar wind plasma are used to examine the dynamics of the fast electron streams which generate solar type-III radio bursts. Of twenty solar electron events observed between April, 1971 and August, 1972, four were found to be amenable to detailed analysis. Observations of the direction of arrival of the radio emission at different frequencies were combined with the solar wind density and velocity measurements at 1 AU to define an Archimedean spiral trajectory for the radio burst exciter. The propagation characteristics of the exciter and of the fast electrons observed at 1 AU were then conpared. We find that: (1) the fast electrons excite the radio emission at the second harmonic; (2) the total distance travelled by the electrons was between 30 and 70% longer than the length of the smooth spiral defined by the radio observations; (3) this additional distance travelled is the result of scattering of the electrons in the interplanetary medium; (4) the observations are consistent with negligible true energy loss by the fast electrons.  相似文献   

2.
A specific combination of spectral fine structures in meter –  decimeter dynamic spectra of solar radio burst emission is reported in observations carried out at the Astrophysical Institute Potsdam. We describe and interpret the occurrence of zebra patterns in fast drifting (type III burst-like) envelopes of absorbed continuum emission. A possible mechanism of the origin of such an involved spectral pattern is put forward, leading to a necessarily multinonequlibrium component coronal plasma. The suggested mechanism is based on the fact that during the passage of a fast electron beam through the corona the loss cone instability (which is caused by electrons captured in a magnetic trap generating the continuum) is quenched. As result, a fast drift burst appears in absorption, and the zebra pattern becomes visible on the low background emission. This zebra pattern is generated by a group of electrons with a nonequilibrium distribution over transverse velocities. In the absence of the beam the pattern is invisible against the background of the stronger continuum. It is shown that the mechanism is sensitive to the distribution parameters of the different electron ensembles. Therefore the effect in dynamic radio spectra is comparatively rare but its proper existence underlines that the simultaneous presence of different ensembles of electrons in the flaring corona can be quite a frequent situation. This can explain some problems in deconvolving X-ray photon spectra to electron energy spectra.  相似文献   

3.
SAWANT  H. S.  ROSA  R. R.  CECATTO  J. R.  GOPALSWAMY  N. 《Solar physics》1997,171(1):155-159
Here, we report on impulsive solar radio bursts observed for the first time with high time/spectral resolution in the range 18 to 23 GHz. Using observational parameters and assuming nonthermal gyrosynchrotron emission from energetic electrons in a loop structure, we have estimated the density of nonthermal electrons, magnetic field, and dimension of the source along the line of sight.  相似文献   

4.
在磁拱底部非线性等离子体密度波传播期间,损失锥分布的反射电子驱动着电子迴旋maser不稳定性的增长,激励出二次谐频波模,支配着太阳射电毫秒Spike辐射。根据这个理论模型,本文着重研究了太阳射电毫秒Spike辐射的频带宽度问题。对于典型参数,计算结果发现:辐射带宽一般为几MHz到几十MHz,最高为100MHz。而且通常折射出的二次谐频z模辐射带宽较窄,而二次谐频o模辐射带宽较宽。  相似文献   

5.
We analyze and discuss the properties of decameter spikes observed in July?–?August 2002 by the UTR-2 radio telescope. These bursts have a short duration (about one second) and occur in a narrow frequency bandwidth (50?–?70 kHz). They are chaotically located in the dynamic spectrum. Decameter spikes are weak bursts: their fluxes do not exceed 200?–?300 s.f.u. An interesting feature of these spikes is the observed linear increase of the frequency bandwidth with frequency. This dependence can be explained in the framework of the plasma mechanism that causes the radio emission, taking into account that Langmuir waves are generated by fast electrons within a narrow angle θ≈13°?–?18° along the direction of the electron propagation. In the present article we consider the problem of the short lifetime of decameter spikes and discuss why electrons generate plasma waves in limited regions.  相似文献   

6.
In solar extreme ultraviolet spectra the He  i and He  ii resonance lines show unusual behaviour and have anomalously high intensities compared with other transition region lines. The formation of the helium resonance lines is investigated through extensive non-local thermal equilibrium radiative transfer calculations. The model atmospheres of Vernazza, Avrett & Loeser are found to provide reasonable matches to the helium resonance line intensities but significantly overestimate the intensities of other transition region lines. New model atmospheres have been developed from emission measure distributions derived by Macpherson & Jordan, which are consistent with SOHO observations of transition region lines other than those of helium. These models fail to reproduce the observed helium resonance line intensities by significant factors. The possibility that non-Maxwellian electron distributions in the transition region might lead to increased collisional excitation rates in the helium lines is studied. Collisional excitation and ionization rates are recomputed for distribution functions with power-law suprathermal tails that may form by the transport of fast electrons from high-temperature regions. Enhancements of the helium resonance line intensities are found, but many of the predictions of the models regarding line ratios are inconsistent with observations. These results suggest that any such departures from Maxwellian electron distributions are not responsible for the helium resonance line intensities.  相似文献   

7.
We consider the relaxation of an unstable distribution of fast non-relativistic electrons. Langmuir turbulence generated by the electrons is found to determine the saturation of an electron-cyclotron maser. The important role of nonlinear processes in Langmuir and electromagnetic waves is shown. The characteristic saturation time is about 1 ms. It is shown that both cyclotron maser emission and the transformation of plasma waves to transverse ones can be essential in the formation of observable radio spectra from solar flares.  相似文献   

8.
We consider the synchrotron emission from relativistic shocks assuming that the radiating electrons cool rapidly (either through synchrotron or any other radiation mechanism). It is shown that the theory of synchrotron emission in the fast cooling regime can account for a wide range of spectral shapes. In particular, the magnetic field, which decays behind the shock front, brings enough flexibility to the theory to explain the majority of gamma-ray burst spectra even in the parameter-free fast cooling regime. Also, we discuss whether location of the peak in observed spectral energy distributions of gamma-ray bursts and active galactic nuclei can be made consistent with predictions of diffusive shock acceleration theory, and find that the answer is negative. This result is a strong indication that a particle injection mechanism, other than the standard shock acceleration, works in relativistic shocks.  相似文献   

9.
We present calculations, made for the first time, of the gyrosynchrotron emission by mildly relativistic electrons with anisotropic pitch-angle distribution using a realistic magnetic loop model in three dimensions. We investigated the intensity, spectral index of the optically thin region of the spectrum, the spatial morphology and the dependency on the source position on the solar disk. The method to describe a three-dimensional source and the procedure to perform the calculations are presented. We have modified the Ramaty’s gyrosynchrotron code to allow the evaluation of anisotropic pitch-angle electron distributions, as described in the complete formalism. We found that anisotropic electron distributions affect the intensity of the radiation, spatial morphology and spectrum of spatially resolved sources. However, the spatially integrated spectrum of the emission seems to be insensitive to the electron pitch-angle distribution, as the magnetic field inhomogeneity smooths out the effects of the anisotropic distribution in the produced radiation, in contrast to homogeneous sources.  相似文献   

10.
We propose a new two-stage model for acceleration of electrons in solar flares. In the first stage, electrons are accelerated stochastically in a post-reconnection turbulent downflow. The second stage is the reprocessing of a subset of these electrons as they pass through a weakly compressive fast shock above the apex of the closed flare loop on their way to the chromosphere. We call this the 'shock-reprocessing' model. The model reproduces the sign and magnitude of the energy-dependent arrival time delays for both the pulsed and smooth component of impulsive solar flare X-rays, but requires either enhanced cooling or the presence of a loop-top trap to explain the concavity of the observed time delay energy relation for the smooth component. The model also predicts an emission site above the loop-top, as seen in the Masuda flare. The loop-top source distinguishes the shock-reprocessing model from previous models. The model makes testable predictions for the energy dependence of footpoint pulse strengths and the location and spectrum of the loop-top emission, and can account for the observed soft-hard-soft trend in the spectral evolution of footpoint emission. The model also highlights the concept that magnetic reconnection provides an environment which permits multiple acceleration processes. Which combination of processes operates within a particular flare may depend on the initial conditions that determine, for example, whether the reconnection downflow is turbulent or laminar. The shock-reprocessing model comprises one such combination.  相似文献   

11.
Dynamics of fundamental and second harmonic electromagnetic emissions are simulated in the solar wind plasma in the presence of non-thermal electron distribution function in which primary Langmuir waves are driven by an electron beam. The electron velocity distribution function is separated into two distributions representing the distribution of the ambient electrons (Maxwellian) and the suprathermal electrons (non-thermal electrons). The effects of the non-thermal electrons on the generation of primary Langmuir waves, emission rates of the fundamental (F) and harmonic waves (H) and their distributions are investigated. The both of the F and H emissions are sensitive to the characterizes of the non-thermal electrons. It is found that in the presence of non-thermal electrons the production of the Langmuir waves decreases and consequently the levels of fundamental and second harmonic waves are reduced. The emission rate of the fundamental transverse waves decreases and its peak moves slightly toward smaller wave-numbers.  相似文献   

12.
We present a model to estimate the synchrotron radio emission generated in microquasar (MQ) jets due to secondary pairs created via decay of charged pions produced in proton-proton collisions between stellar wind ions and jet relativistic protons. The synchrotron radiation produced by secondary electrons/positrons is computed using consistently derived particle energy distributions. Energy losses due to synchrotron and inverse Compton (IC) processes, and adiabatic expansion, are taken into account. The space parameter for the model is explored and the corresponding spectral energy distributions (SEDs) are presented. We conclude that secondary leptonic emission represents a significant though hardly dominant contribution to the total radio emission in MQs, with observational consequences that can be used to test some still unknown processes occurring in these objects as well as the nature of the matter outflowing in their jets.   相似文献   

13.
The evolution of the energy distributions of fast flare electrons injected towards the chromosphere are computed by the Monte Carlo method for different depths. Using these distributions, power law bremsstrahlung spectra having spectral indices increasing with photon energies are obtained.  相似文献   

14.
A multi-wavelength spatial and temporal analysis of solar high-energy electrons is conducted using the August 20, 2002 flare of an unusually flat (γ1 = 1.8) hard X-ray spectrum. The flare is studied using RHESSI, Hα, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model-independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below ∼100 keV. The positions of the Hα emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Hα emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Hα intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.  相似文献   

15.
The energy and angular distributions of electrons have been studied by combining small angle scatterings using analytical treatment with large angle collisions using Monte Caroo calculations as a function of column density for initially power-law electron distributions and incidence angles of 0, 30, and 60°. Using these distributions the X-ray and EUV line flux as a function of column density has been computed. The flux increases with increase in column density. At the initial column densities the contribution of non-thermal electrons for the production of line flux is negligible. However, it becomes significant at intermediate column densities at which the electron energy and angular distributions have non-Maxwellian nature. X-ray and EUV flux have also been calculated as a function of electron spectral index at a fixed column density. It falls steeply with increase in spectral index. The calculated flux is compared with the observations.  相似文献   

16.
A certain class of non-thermal electron distributions can exhibit more mono-energetic shape and a higher peak than the Maxwellian distribution. This type of electron distribution can be observed mainly in flaring plasmas. We have studied the influence of this kind of electron energy distribution on the excitation equilibrium of Fe VIII – Fe XVI in the solar corona. The changes in synthetic spectra of the emission lines belonging to these ions due to this non-thermal distribution are shown. The possibilities of finding the shape of the energy distribution function of electrons from the Fe line ratios are also discussed. The results can be used for diagnostics of coronal plasmas where the deviations of particle energy distributions from the Maxwellian one can be significant.  相似文献   

17.
There are abundant emission and absorption lines superimposed on the continuum spectra of the different solar atmospheric layers. The chemical composition and physical state of the solar atmosphere can be probed by the inversion of the profiles of these spectral lines. Due to the low density and large temperature difference in the chromosphere and transition region of the Sun, it is hard to establish the thermal dynamic equilibrium. It is necessary to adopt the theory of Non-Local Thermodynamic Equilibrium (N-LTE) to construct the corresponding atmospheric model. In this paper, the departure from the Local Thermodynamic Equilibrium (LTE) in the middle and lower atmosphere of the sun is investigated with the well-defined relative departure factor and the relevant calculations. We first make an inversion of the spectral lines formed at the different heights in the chromosphere and transition region during a total solar eclipse, to obtain the parameters of the observed spectral lines, such as the continuum source function, line source function, Doppler width, and thus the equivalent kinetic temperature. According to these line parameters obtained by the inversion, we calculate the quantitative results about the departure from the LTE at each space sampling point in the 2D field of view. Secondly, we reconstruct the 2D distributions of the radiation intensity, equivalent kinetic temperature, and relative departure factor according to the alignment of the optical fiber array in the integrated field unit (IFU) used by the telescope. The results show that there is a stronger correlation in the distributions of the temperature and relative departure factor existed in local small regions, but without evident correlation with the distribution of radiation intensity. There is an obvious difference between the distributions of the equivalent temperature and relative departure factor derived from two spectral lines, which shows a strong structurization and complexity existed in some local small regions of the solar atmosphere, and provides a new perspective for us to further understand the physics of the middle and lower atmosphere of the Sun.  相似文献   

18.
19.
A high-resolution microwave spectrometer has been developed by converting the Owens Valley solar interferometer to frequency-agile operation. The system uses 27 m antennas equipped with phase-locked receivers which can change their observing frequency in 25 or 50 ms. Microwave spectra between 1 and 18 GHz are obtained in a few seconds by successive observations at up to 86 discrete frequencies. At each frequency the data are equivalent to the total power from each antenna and the interferometric amplitude and phase. All data are fully calibrated with respect to cosmic sources.The instrument was motivated by the need for better microwave spectral resolution for the study of plasma parameters, non-thermal electrons and coronal magnetic field strengths in solar flares and active regions. Early observations with the system are illustrated by a sequence of flare spectra featuring cases with exceptionally narrow continuum bandwidths.  相似文献   

20.
An analysis is made of the photodissociation and photoionization processes in the mesosphere due to the solar H Lyman-alpha line. The irradiance of the line and its variation with solar activity are considered in the determination of the photodissociation of CH4, CO2, H2O and O2, and of the photoionization of NO. Lyman-alpha contributes directly to these processes in the mesosphere after its absorption, which depends on wavelength and temperature, by molecular oxygen. The H Lyman-alpha radiation considered for mesospheric processes is characterized by a profile of an emission line with a central reversal, and wings extending to about ± 1.75 A where the intensity reaches about 1% of that of the peak. Simple formulae are deduced for the photodissociation optical depths and frequencies and these take into account the various solar activity conditions and the different spectral characteristics of each molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号