首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
The Quaternary activity of the faults at the eastern end of the Altyn Tagh fault, including the Dengdengshan–Chijiaciwo, Kuantanshan and Heishan faults, was studied on the basis of interpretation of satellite images, trenching, geomorphologic offset measurements and dating. The Altyn Tagh fault has extended eastwards to Kuantanshan Mountain. The left–slip rates of the Altyn Tagh fault decreased through the Qilianshan fault and were transformed into thrust and folds deformation of many NW–trending faults within the Jiuxi basin. Meanwhile, under NE–directed compression of the Tibetan plateau, thrust dominated the Dengdengshan–Chijiaciwo fault northeast of the Kuantanshan uplift with a rate lower than that of every fault in the Jiuxi basin south of the uplift, implying that tectonic deformation is mainly confined to the plateau interior and the Hexi Corridor area. From continual northeastward enlargement of the Altyn Tagh fault, the Kuantanshan uplift became a triangular wedge intruding to the east, while the Kuantanshan area at the end of this wedge rose up strongly. In future, the Altyn Tagh fault will continue to spread eastward along the Heishan and Jintananshan faults. The results have implications for understanding the propagation of crustal deformation and the mechanism of the India–Eurasian collision.  相似文献   

2.
The 26 November 2005 Jiujiang-Ruichang, Jiangxi, Ms?5.7 earthquake occurred in a seismotectonic setting of moderate earthquake. The northwest-trending Xiangfan-Guangji fault (XFG) does not enter into the epicenter vicinity, but the northeast-trending Ruichang-Wuning fault (RWF) as a regional fault extends to the epicenter nearby, appearing as the Ruichang basin and its marginal faults. Tilting of the Ruichang Basin (RCB) in the Quaternary was controlled by the RCB southeast-marginal, buried fault (RSMBF). Shallow geophysical survey reveals that the RSMBF caused an offset of the reflection layers. Drill hole columnar section demonstrates that there are about 10–12?m displacement in the lower section of the middle-Pleistocene Series along the RSMBF, but no disruption is found in the upper section of the middle-Pleistocene Series. The RSMBF not only has activity in the Quaternary, but also coincides with the nodal plane I from the focal mechanism of the Jiujiang-Ruichang Ms?5.7 earthquake. This evidence, including aftershock distribution and isoseismic lines, strongly suggests that the RSMBF might be the seismogenic tectonics. The RWF is discontinuous at the surface, and consists of three en echelon Quaternary basins, which are the Ruichang, Fanzhen and Wuning basins. Three moderate earthquakes, the Fanzhen ML?4.9 earthquake, the Yejiapu ML?4.1 earthquake and the Jiujiang-Ruichang Ms?5.7 earthquake, have happened in the basins since 1995. The seismogenic tectonics of the Jiujiang-Ruichang Ms?5.7 earthquake is not isolated, but may be controlled by the RWF at depth, the slip of which causes the accumulation of energy for earthquake occurrence.  相似文献   

3.
The slip rate of Yema River–Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82 ± 0.20 mm/a at Dazangdele site,2.00 ± 0.24 mm/a at Shibandun site,and 0.50 ± 0.36 and 2.80 ± 0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains,whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau.  相似文献   

4.
The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau. However, the Dadu River which is associated with the fault does not flow following the path, but makes a 90° turn within a distance of 1 km at Shimian, heading east, and joins the Yangtze River, finally flowing into the East China Sea. Adjacent to the abrupt turn, a low and wide pass near the Daqiao reservoir at Mianning separates the N–S course of the Dadu River from the headwater of the A...  相似文献   

5.
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks.  相似文献   

6.
Little attention had been paid to the intracontinental strike-slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re-measured GPS data in 2003, an increasing amount of attention has been paid to this neglected fault. The local relief and transverse swath profile show that the Longriba fault is the boundary line that separates the high and flat tomography of the Tibet plateau from the high and precipitous tomography of Orogen. In addition, GPS data shows that the Longriba fault is the boundary line where the migratory direction of the Bayan Har block changed from eastward to southeastward. The GPS data shows that the Longriba fault is the boundary fault of the sub-blocks of the eastern Bayan Har block. We built three-dimensional models containing the Longriba fault and the middle segment of the Longmenshan fault, across the Bayan Har block and the Sichuan Basin. A nonlinear finite element method was used to simulate the fault behavior and the block deformation of the Eastern Tibetan Plateau. The results show that the low resistivity and low velocity layer acts as a detachment layer, which causes the overlying blocks to move southeastward. The detachment layer also controls the vertical and horizontal deformation of the rigid Bayan Har block and leads to accumulation strain on the edge of the layer where the Longmenshan thrust is located. After a sufficient amount of strain has been accumulated on the Longmenshan fault, a large earthquake occurs, such as the 2008 Wenchuan earthquake. The strike slip activity of the Longriba fault, which is above the low resistivity and low velocity layer, partitions the lateral displacements of the Bayan Har block and adjusts the direction of motion of the Bayan Har block, from the eastward moving Ahba sub-block in the west to southeastward moving Longmenshan sub-block in the east.  相似文献   

7.
The Bayanhot Basin is a superimposed basin that experienced multiple-staged tectonic movements; it is in the eastern Alxa Block, adjacent to the North China Craton(NCC) and the North Qilian Orogenic Belt(NQOB).There are well-developed Paleozoic–Cenozoic strata in this basin, and these provide a crucial window to a greater understanding of the amalgamation process and source-to-sink relationships between the Alxa Block and surrounding tectonic units.However, due to intensive post-depositional modification, and lack of subsurface data,several fundamental issues—including the distribution and evolution of the depositional systems, provenance supplies and source-to-sink relationships during the Carboniferous– Permian remain unclear and thus hinder hydrocarbon exploration and limit the geological understanding of this basin.Employing integrated outcrop surveys, new drilling data, and detrital zircon dating, this study examines the paleogeographic distribution and evolution, and provenance characteristics of the Carboniferous–Permian strata in the Bayanhot Basin.Our results show that the Bayanhot Basin experienced a long-term depositional evolution process from transgression to retrogression during the Carboniferous–late Permian.The transgression extent could reach the central basin in the early Carboniferous.The maximum regional transgression occurred in the early Permian and might connect the Qilian and North China seas with each other.Subsequently, a gradual regression followed until the end of the Permian.The northwestern NCC appeared as a paleo-uplift area and served as a sediments provenance area for the Alxa Block at that time.The NCC, Bayanwula Mountain, and NQOB jointly served as major provenances during the Carboniferous–Permian.There was no ocean separation, nor was there an orogenic belt between the Alxa Block and the NCC that provided sediments for both sides during the Carboniferous–Permian.The accretion of the Alxa and North China blocks should have been completed before the Carboniferous period.  相似文献   

8.
The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and has been highly active since the Cenozoic. The well–known Great Huaxian County Earthquake of 1556 occurred on the Huashan piedmont fault. This earthquake, which claimed the lives of approximately 830000 people, is one of the few large earthquakes known to have occurred on a high–angle normal fault. The Huashan piedmont fault is a typical active normal fault that can be used to study tectonic activity and the associated hazards. In this study, the types and characteristics of late Quaternary deformation along this fault are discussed from geological investigations, historical research and comprehensive analysis. On the basis of its characteristics and activity, the fault can be divided into three sections, namely eastern, central and western. The eastern and western sections display normal slip. Intense deformation has occurred along the two sections during the Quaternary; however, no deformation has occurred during the Holocene. The central section has experienced significant high–angle normal fault activity during the Quaternary, including the Holocene. Holocene alluvial fans and loess cut by the fault have been identified at the mouths of many stream valleys of the Huashan Mountains along the central section of the Huashan piedmont fault zone. Of the three sections of the Huashan piedmont fault, the central section is the most active and was very active during the late Quaternary. The rate of normal dip–slip was 1.67–2.71±0.11 mm/a in the Holocene and 0.61±0.15 mm/a during the Mid–Late Pleistocene. As is typical of normal faults, the late Quaternary activity of the Huashan piedmont fault has produced a set of disasters, which include frequent earthquakes, collapses, landslides, mudslides and ground fissures. Ground fissures mainly occur on the hanging–wall of the Huashan piedmont fault, with landslides, collapses and mudslides occurring on the footwall.  相似文献   

9.
The Qilian–Haiyuan fault zone in the northeastern Tibetan Plateau has been the source of strong earthquakes in the region. In its middle segment, the Jinqianghe fault is an important active fault within the Tianzhu seismic gap; however, little is known about its slip behavior. To present a new horizontal displacement distribution along this fault, we used WorldView-2 stereo pairs and unmanned aerial vehicle-based photogrammetry to construct digital elevation models to obtain a detailed tectono-geomorphic interpretation and geomorphic offsets. The offset marker measurements yielded 135 geomorphic displacements and 8 offset clusters. Radiocarbon dating was used to establish the regional age sequence of the geomorphic units in offset fluvial terraces at four study sites. The displacements and ages linked the offset clusters with the geomorphic unit sequence; the Holocene strike-slip rate of the Jinqianghe fault was estimated to 4.8–5.6 mm/a at ~4–12 ka and 2.9–4.7 mm/a from ~4 ka. Three recent earthquakes (with a recurrence interval of ~1000 years) represent an active seismic period, revealing the potential seismic hazard along this fault because it has not ruptured in the last 1500 years.  相似文献   

10.
Abstract: This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results show that a lot of normal faulting type earthquakes concentrate in the central Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of the normal faulting earthquakes are almost in the N-S direction based on the analyses of the equal area projection diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extension is probably an eastward extensional motion, mainly a tectonic active regime in the altitudes of the plateau. The tensional stress in the E-W or WNW-ESE direction predominates the earthquake occurrence in the normal event region of the central plateau. A number of thrust fault and strike-slip fault type earthquakes with strong compressive stress nearly in the NNE-SSW direction occurred on the edges of the plateau. The eastward extensional motion in the Tibetan plateau is attributable to the eastward movement of materials in the upper mantle based on seismo-tomographic results. The eastward extensional motion in the Tibetan plateau may be related to the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. The northward motion of the Tibetan plateau shortened in the N-S direction probably encounters strong obstructions at the western and northern margins. Extensional motions from the relaxation of the topography and/or gravitational collapse in the altitudes of the plateau occur hardly in the N-S direction. The obstruction for the plateau to move eastward is rather weak.  相似文献   

11.
We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred during the Early Pleistocene, evidenced by eastward thrusting of Mesozoic carbonates on the Pliocene lacustrine deposits along the Minjiang upstream fault zone and by development of the transpressional ridges of basement rocks along the Anninghe river valley. The Middle Pleistocene seems to be a relaxant stage with local development of the intra-mountain basins particularly prominent along the Minjiang Upstream and along the southern segment of the Anninghe River Valley. This relaxation may have been duo to a local collapse of the thickened crust attained during the late Neogene to early Pleistocene across this marginal zone. Fault kinematics has been changed since the late Pleistocene, and was predominated by reverse sinistral strike-slip along the Minshan Uplift, reverse dextral strike-slip on the Longmenshan fault zone and pure sinistral strike-slip on the Anninghe fault. This change in fault kinematics during the Quaternary allows a better understanding of the mechanism by which the marginal ranges of the plateau has been built through episodic activities.  相似文献   

12.
The Altyn Tagh Fault (ATF) serves as a key continental‐scale controlling structural element of the Tibetan Plateau. However, its eastward extent remains controversial. Here we use high‐resolution seismic reflection profiles to investigate the subsurface structures of the easternmost ATF and use these to delimit the easternmost extent of the fault. The structural analyses show an eastward geometric change from transpressional positive flower structures to compressional thrusts, with transpression‐induced shortening magnitudes decreasing eastwards from a maximum of ~5.3 km to being absent. Stratigraphic controls indicate that the deformation took place over the last ~<1.2 Ma. Our wider findings lead us to: (a) reject the suggestion that the ATF previously extended beyond the Kuantan Shan‐Hei Shan to link with the Alxa‐East Mongolia Fault; and (b) propose that the rigid block model used to describe the Tibetan Plateau crust is not consistent with the extent and structural details of the easternmost ATF.  相似文献   

13.
藏南格仁错地区孜桂错断裂的第四纪活动及其构造意义   总被引:7,自引:4,他引:7  
因印度板块与欧亚板块碰撞,第四纪时青藏高原的拉萨地体内部出现一系列南北向的正断层,拉萨地体的北边界出现一系列近东西向的走滑断层.孜桂错活动断裂就是这些走滑断层中具有典型意义的一条,其活动表现为右行走滑,断裂切过河流、冲积扇、废弃的湖岸等,断裂的水平位移从10 m到375 m不等.它转换连接朋曲-申扎正断层和喀喇昆仑-嘉黎剪切带;同时,孜桂错断裂本身也是喀喇昆仑-嘉黎剪切带的重要组成部分.它的活动反映拉萨地体内部的东西向伸展以及羌塘地体相对拉萨地体的向东运动.  相似文献   

14.
Abstract: This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10–14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2–4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7–9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and rheologically layered. The upper crust seems to be decoupled from the lower crust through a décollement zone at a depth of 15–20 km, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this décollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.  相似文献   

15.
阿尔金断裂东段的构造转换模式   总被引:1,自引:0,他引:1  
大型走滑断裂控制着青藏高原的变形,众多学者通过阿尔金断裂来探索青藏高原北部的构造变形过程。基于野外调查和前人的研究结果可知阿尔金断裂的滑动速率在肃北—疏勒河口段表现为三联点两侧的突降,祁连山西段的逆冲和走滑断裂吸收了阿尔金断裂的左旋位移。由于祁连山内部次级断裂活动性的增强,现存阿尔金断裂连续地表破裂终止于酒泉盆地西侧,但位于其东侧的断裂系仍属于阿尔金断裂。在Kohistan岛弧与欧亚板块碰撞之后,青藏高原沿阿尔金断裂曾发生滑动速率近一致的侧向挤出,断裂两侧此时并未发生明显的隆起。随后东昆仑造山带和祁连山造山带的先后大规模隆升,高原的北东向挤出迅速减弱。阿尔金断裂北东向挤出能力与东昆仑造山带和祁连山造山带的隆起存在明显的耦合作用。  相似文献   

16.
The apatite fission track dating of samples from the Dabashan(i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous(~90–70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene(~50–45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic(since ~10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone(PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous(~70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.  相似文献   

17.
青藏高原北部发育一系列北西向大型左行走滑断裂带,目前普遍认为这些左行走滑断裂至今仍在活动,在左行走滑作用下,青藏高原东部向东挤出并伴随强烈的地块旋转运动。本文以介于东昆仑左行走滑断裂带与玉树左行走滑断裂带之间的巴颜喀拉山中央断裂(及其周缘的构造形迹)为主要研究对象,根据断层构造的直接解译标志——清晰的线性形迹和构造地貌标志如断层陡坎、断层谷地、挤压脊、地裂缝、断层走滑造成的水系错动、新老洪积扇的侧向叠加等,在高分辨率的SPOT5及中等分辨率ETM遥感影像上对研究区内北西向活动断层与北东向活动断层的空间分布、规模、活动性质、相对活动时代及活动幅度等进行了遥感分析和野外验证,并结合对断层周缘沿共轭张裂隙展布的水系与地裂缝的规模、展布方向等的统计分析,对晚第四纪应力场进行了恢复。研究表明:北西向活动断层具右行走滑兼有逆冲运动特征,北东向活动断层具左行走滑兼有正滑运动特征,二者为晚第四纪NNE向(2°)挤压应力条件下产生的北西向与北东向走滑作用的产物。北西向右行走滑作用的发现,预示着青藏高原北部第四纪以来普遍存在的北西向左行走滑作用可能在晚更新世就已终止。在此基础上,探讨了处于不同展布方向上的湖盆在同一应力条件下表现出的不同演化趋势:即在NNE向挤压应力作用下,呈北东向展布的错坎巴昂日东湖处于近东西向拉张状态,呈北西向展布的卡巴纽尔多湖变化不明显。  相似文献   

18.
塔西北柯坪剪切挤压构造   总被引:28,自引:3,他引:25  
塔里木西北的柯坪地区存在着再变形的逆冲岩席。研究表明塔里木盆地西北边界断层-阿合奇断层为一巨型左行走滑断层。它在新生代的总走滑量达304km,具有与塔里木盆地东南边界阿尔金断层相同量级的走滑量。阿合奇断层与阿尔金断层造成了阿合奇-西昆仑-西南塔里木-阿尔金断层剪切挤压构造系统。  相似文献   

19.
青藏高原东南部第四纪右旋剪切运动   总被引:4,自引:0,他引:4  
通过对藏东南嘉黎断裂和滇西北断裂实地考察研究,表明青藏高原南部不存在统一的边界走滑断裂。嘉黎断裂的西段位于青藏高原南部,是一个南北挤压作用下的东西向伸展构造区,发育近南北向的地堑系,嘉黎断裂西段是这些地堑之间的转换断层,具有较高的右旋走滑速率。滇西北断裂与红河断裂构成川滇菱形块体的西南边界,该块体具有向东南逃逸和顺时针旋转运动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号