首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that the universe is undergoing a phase of accelerated expansion. Plenty of models have already been created with the purpose of describing what causes this non-expected cosmic feature. Among them, one could quote the extradimensional and the f(R,T) gravity models. In this work, in the scope of unifying Kaluza-Klein extradimensional model with f(R,T) gravity, cosmological solutions for density and pressure of the universe are obtained from the induced matter model application. Particular solutions for vacuum quantum energy and radiation are also shown.  相似文献   

2.
3.
We have constructed Locally Rotationally Symmetric Bianchi type I (LRSBI) cosmological models in the f(R,T) theory of gravity when the source of gravitation is the bulk viscous fluid. The models are constructed for f(R,T)=R+2f(T) and f(R,T)=f 1(R)+f 2(T). We found that in the first case the model degenerates into effective stiff fluid model of the universe. In the second case we obtained degenerate effective stiff fluid model as well as general bulk viscous models of the universe. Some physical and kinematical properties of the models are also discussed.  相似文献   

4.
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f 1(R)+f 2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters.  相似文献   

5.
The paper deals with a spatially homogeneous and anisotropic universe filled with perfect fluid and dark energy components. We consider the f(R,T) theory according to holographic and new agegraphic dark energy in the Bianchi type I universe. In this study, we concentrate on two particular models of f(R,T) gravity namely, R+2f(T) and f(R)+λT. We conclude that the derived f(R,T) models can represent phantom or quintessence regimes of the universe.  相似文献   

6.
In this paper, we have investigated Bianchi type VI h cosmological model filled with perfect fluid in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). We have obtained the cosmological models by solving the field equations. Some physical behaviors of the model are also studied.  相似文献   

7.
In this paper, we employ cut and paste scheme to construct thin-shell wormhole of a charged black string with f(R) terms. We consider f(R) model as an exotic matter source at wormhole throat. The stability of the respective solutions are analyzed under radial perturbations in the context of R+δR 2 model. It is concluded that both stable as well as unstable solutions do exist for different values of δ. In the limit δ→0, all our results reduce to general relativity.  相似文献   

8.
The new class of cosmological model of the early Universe is considered with f(R,T) modified theories of gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). The exact solutions to the corresponding field equations are obtained in quadrature form. The cosmological parameters have been discussed in detail. We have also discussed the well-known astrophysical phenomena, namely the Hubble parameter H(z), luminosity distance (d L ) and distance modulus μ(z) with redshift.  相似文献   

9.
In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f (R,T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy–momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω(ρ ? ρ ?). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.  相似文献   

10.
We studied plane symmetric cosmological model in the presence of quark and strange quark matter with the help of f(R, T) theory. To decipher solutions of plane symmetric space-time, we used power law relation between scale factor and deceleration parameter. We considered the special law of variation of Hubble’s parameter proposed by Berman (Nuovo Cimento B74, 182, 1983) which yields constant deceleration parameter. We also discussed the physical behavior of the solutions by using some physical parameters.  相似文献   

11.
A complete solution has been obtained of the steady-state transport equations, including energy losses, for cosmic-rays in the interplanetary region for conditions in which diffusive transport is negligible and convective effects dominate. The region of validity of the solution will in general be a shell between heliocentric radiiR 1 andR 2 (R 2 may be infinite). The precise range of kinetic energyT and heliocentric radiusr in which the solution is valid is not known but it appears to be applicable in the vicinity of Earth to protons withT≤1 MeV. ForT~0.5 MeV near Earth,R 1 may be ~0.5 AU andR 1 will decrease asT, observed near Earth, decreases. The solution is simple in form but quite general; it predicts the differential number densityU (r, T) in terms of that observed at radius a (near Earth, say). Thus it may be quite useful in interpreting and co-ordinating steady-state cosmicray observations atT~1 MeV. The differential and integral intensities, differential anisotropy and differential radial-gradient at (r, T) also are determined. A simple interpretation of the solution is given in terms of energy losses due to adiabatic deceleration of the particles as they are being convected outward from the Sun. This leads to the useful notion of following a particle in (r, T) as it increasesr and decreasesT. Particles convected from the outer corona to Earth decrease their kinetic energy by factor ~500.Following a particle the Compton-Getting factor remains constant. Particles observed at (a, T) in convective transport have come from nearer the Sun; they may be of solar origin but may also be of galactic origin having penetrated tor<R 1相似文献   

12.
In this paper, we have constructed the cosmological model of the universe in f(RT) theory of gravity in a Bianchi type \(\mathrm{VI}_h\) universe for the functional f(RT) in the form \(f(R,T)=\mu R+\mu T\), where R and T are respectively Ricci scalar and trace of energy momentum tensor and \(\mu \) is a constant. We have made use of the hyperbolic scale factor to find the physical parameters and metric potentials defined in the space-time. The physical parameters are constrained from different representative values to build up a realistic cosmological model aligned with the observational behaviour. The state finder diagnostic pair is found to be in the acceptable range. The energy conditions of the model are also studied.  相似文献   

13.
The tridiurnal wave in cosmic-ray intensity expected from a free space anisotropy is theoretically calculated for different cosmic-ray stations which are characterized by different shapes of asymptotic cones of acceptance. The amplitude A and the time of maximum Tmax are given for latitude dependence of the form cosn λ and rigidity dependence of the form Rβ exp (?(R?1R0)), where λ and R are the latitude and rigidity respectively and n, β, R0 are constants. The values of A and Tmax, are calculated for different values of n, β and R0 for each station. The dependence of A and Tmax on the anisotropy parameters is studied for the proper selection of cosmic-ray stations whose data may be used in determining these parameters.Available experimental data were used to find the observed amplitudes of the tridiurnal variations at five stations using power spectrum analysis with hanning applied on the averaged trains. Minimum variance analysis of the theoretical and experimental amplitudes showed that β has a value between 1 and 2, R0 greater than 100 GV and n smaller than 3.  相似文献   

14.
A spatially homogeneous Bianchi type-VI0 space-time is considered in the frame work of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. Exact solutions of the field equations are obtained both in the absence and in the presence of cosmic strings under some specific plausible physical conditions. Some physical and kinematical properties of the model are, also, studied.  相似文献   

15.
We solve the uvbyRI light curves obtained by Wolf (1994) with a CCD photometer. Wolf did not solve the light curves, while particular interest in them stems from the fact that a secondary minimum, which other observers failed to detect, is clearly seen in the byRI light curves. This enables us to consider a new eclipse model in which we hypothesize that the secondary component at primary minimum completely obscures the primary, smaller B star, but, at the same time, the light from a third star is observed. Based on this hypothesis, we computed the brightness of each of the three stars for the six bands by analyzing the depths of the primary and secondary minima. Satisfactory agreement between theoretical and observed light curves was achieved by assuming the following parameters for the stars: effective temperature T 1=17000 K, radius R 1 = 2.5 R , spectral type Sp1 = B3—B4 for the primary; T 2=5700 K, R 2 = 8.4 R , Sp2 = G0—G2 for the secondary; and T 3=29000 K, R 3 = 1.0 R , Sp3=B0 for the third star. In the Hertzsprung-Russell diagram, the first star lies on the zero-age main sequence, the second is on the way from the birthline to the main sequence in the region of giants, and the third falls within the region of hot subdwarfs.  相似文献   

16.
A spatially homogeneous and anisotropic Bianchi type-VI0 space-time filled with perfect fluid in general relativity and also in the framework of f(R,T) gravity proposed by Harko et al. (in arXiv:1104.2669 [gr-qc], 2011) has been studied with an appropriate choice of the function f(R,T). The field equations have been solved by using the anisotropy feature of the universe in Bianchi type-VI0 space time. Some important features of the models, thus obtained, have been discussed. We noticed that the involvement of new function f(R,T) doesn’t affect the geometry of the space-time but slightly changes the matter distribution.  相似文献   

17.
The solar system's position in the Galaxy is an exclusive one, since the Sun is close to the corotation circle, which is the place where the angular velocity of the galactic differential rotation is equal to that of density waves displaying as spiral arms. Each galaxy contains only one corotation circle; therefore, it is an exceptional place. In the Galaxy, the deviation of the Sun from the corotation is very small — it is equal to ΔR/R ≈0.03, where ΔR=R c ?R ,R c is the corotation distance from the galactic center andR is the Sun's distance from the galactic center. The special conditions of the Sun's position in the Galaxy explain the origin of the fundamental cosmogony timescalesT 1≈4.6×109 yr,T 2?108 yr,T 3?106 yr detected by the radioactive decay of various nuclides. The timescaleT 1 (the solar system's ‘lifetime’) is the protosolar cloud lifetime in a space between the galactic spiral arms. The timescaleT 2 is the presolar cloud lifetime in a spiral arm.T 3 is a timescale of hydrodynamical processes of a cloud-wave interaction. The possibility of the natural explanation of the cosmogony timescales by the unified process (on condition that the Sun is near the state of corotation) can become an argument in favour of the fact that the nearness to the corotation is necessary for the formation of systems similar to the Solar system. If the special position of the Sun is not incidental, then the corotation circles of our Galaxy, as well as those of other galaxies, are just regions where situations similar to ours are likely to be found.  相似文献   

18.
It is shown that the acceleration of the universe can be understood by considering a f(T) gravity models. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. For these f(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. We consider spatially homogenous and anisotropic Bianchi type I universe in the context of f(T) gravity. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. We reconstruct f(T) theories from two different holographic dark energy models in different time durations. For the holographic dark energy model, the dark energy dominated era with new setting up is chosen for reconstruction, and the Ricci dark energy model, radiation, matter and dark energy dominated time durations are all investigated. Finally we have obtained a modified gravity action consistent with the holographic dark energy scenario.  相似文献   

19.
This paper is devoted to investigate the spherically symmetric wormhole models in f(RT) gravity, where T and R are trace of stress energy tensor and the Ricci scalar, respectively. In this context, we discuss three distinct cases of fluid distributions viz, anisotropic, barotropic and isotropic matter contents. After considering the exponential f(RT) model, the behavior of energy conditions are analyzed that will help us to explore the general conditions for wormhole geometries in this gravity. It is inferred that the usual matter in the throat could obey the energy conditions but the gravitational field emerging from higher order terms of modified gravity favor the existence of the non-standard geometries of wormholes. The stability as well as the existence of wormholes are also analyzed in this theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号