首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study deals with spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type I cosmological model with dominance of dark energy. To get the deterministic model of Universe, we assume that the shear scalar (σ) in the model is proportional to expansion scalar (θ). This condition leads to A=B n , where A, B are metric potential and n is positive constant. It has been found that the anisotropic distribution of dark energy leads to the present accelerated expansion of Universe. The physical behavior of the Universe has been discussed in detail.  相似文献   

2.
The interaction of modified holographic dark energy and dark matter with varying G in flat Kaluza Klein universe is considered. Further, we take infrared cutoff scale L as future event horizon. In this scenario, equations of state parameter as well as evolution are explored. We also check the validity of the generalized second law of thermodynamics. It is interesting to mention here that our results show consistency with the present observations.  相似文献   

3.
In this paper, we study the anisotropic Bianchi type-VI0 metric filled with dark matter and anisotropic ghost dark energy. We have solved the Einstein's field equations by considering hybrid expansion law (HEL) for the average scale factor. It is found that at later times the universe becomes spatially homogeneous, isotropic and flat. From a state finder diagnosis, it is found that our model is having similar behavior like ɅCDM model at late phase of cosmic time.  相似文献   

4.
5.
This article is concerned with the investigation of dynamical behaviour of Kaluza-Klein(KK) FRW type dark energy cosmological models in the framework of a scalar-tensor theory of gravitation formulated by Saez and Ballester (Phys. Lett. A113,467:1986). Three cosmological models, in this theory, are presented by solving the field equations using (i) hybrid expansion law given by Pradhan et al. (Ind.J.Phys.89,5032015), (ii)varying deceleration parameter proposed by Mishra et al.(Int. J. Theor. Phy.52, 2546: 2013) and(iii)linearly varying deceleration parameter defined by Akarsu and Dereli (Int. J. Theor. Phys. 51, 612: 2012). We have evaluated the dynamical parameters for each of the models, namely, the equation of state (EoS) parameter, the deceleration parameter, statefinder parameter and total energy density parameter of dark energy. We have also found the scalar field in the models. We have discussed the dynamical behavior of the parameters through graphical representation with special reference to Planck Collaboration data. It is observed that our models describe accelerated expansion of the universe and our theoretical results are, reasonably, in good agreement with the observational data.  相似文献   

6.
7.
In this paper, we have investigated Bianchi type VI h , II and III cosmological model with wet dark fluid in scale invariant theory of gravity, where the matter field is in the form of perfect fluid and with a time dependent gauge function (Dirac gauge). A non-singular model for the universe filled with disorder radiation is constructed and some physical behaviors of the model are studied for the feasible VI h (h=1) space-time.  相似文献   

8.
We introduce a four-dimensional dilaton-Brans-Dicke cosmological scenario corresponding to multiverse filled with dark energy or phantom energy having a positive cosmological constant and containing infinite singularities with eternally Big Rip. Many interesting consequences are revealed and discussed in some details.  相似文献   

9.
10.
We consider a self-consistent system of Bianchi type-V cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=γ ρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein equations are obtained as a quadrature. The cases of disordered radiation and models with power-law and exponential expansion have discussed in detail. For large t, the models tend to be isotropic.  相似文献   

11.
Plane symmetric cosmological models with perfect fluid and dark energy   总被引:1,自引:0,他引:1  
We consider a self-consistent system of Plane symmetric cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=γρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein’s field equations are obtained as a quadrature. The cases of Zeldovich Universe, Dust Universe and Radiation Universe and models with power-law and exponential expansion have discussed in detail. For large t, the models tend to be isotropic.  相似文献   

12.
13.
We have constructed a model in Lyra manifold and time varying cosmological constant with perfect fluid using LVDP (Linear Varying Deceleration Parameter). Bianchi type-III metric is used as source of investigation. To get a deterministic solution of the field equation the expansion scalar (θ) is considered as proportional to the shear scalar (σ). The cosmological constant is found to be positive which satisfies the result obtained by supernova Type-Ia Observations [1999]. Here we analyse the behaviour of pressure and deceleration parameter by using different form of dark energy(DE). In addition to it, some physical and geometrical properties of the solutions are studied.  相似文献   

14.
15.
In this paper, we have investigated a five dimensional Kaluza-Klein space-time in the frame work of Brans-Dicke (Phys. Rev. 124:925, 1961) scalar-tensor theory of gravitation when the source of energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. We have obtained a determinate solution of the field equations using the special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983) We have also used a barotropic equation of state for the pressure and density. Some physical properties of the model are also discussed.  相似文献   

16.
The variation of the expansion rate of the Universe with time produces an evolution in the cosmological redshift of distant sources (e.g. quasar Lyman α absorption lines) that might be directly observed by future ultrastable, high-resolution spectrographs (such as the COsmic Dynamics Experiment) coupled to extremely large telescopes (such as the European Southern Observatory's Extremely Large Telescope). This would open a new window to explore the physical mechanism responsible for the current acceleration of the Universe. We investigate the evolution of cosmological redshift from a variety of dark energy models, and compare it with simulated data. We perform a Fisher matrix analysis and discuss the prospects for constraining the parameters of these models and for discriminating among competing candidates. We find that, because of parameter degeneracies, and the inherent technical difficulties involved in this kind of observations, the uncertainties on parameter reconstruction can be rather large unless strong external priors are assumed. However, the method could be a valuable complementary cosmological tool, and give important insights on the dynamics of dark energy, not obtainable using other probes.  相似文献   

17.
Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in sr plane compare with original holographic dark energy model.  相似文献   

18.
The anisotropic nature of the dark energy for Bianchi type-VI0 space time is discussed. The exact solution of the Einstein field equations under the assumption on the anisotropy of the fluid are obtained for exponential and power-law volumetric expansions. The isotropy of the fluid, space and expansion are examined.  相似文献   

19.
We consider a self consistent system of Bianchi Type-I cosmology and Binary Mixture of perfect fluid and dark energy. The perfect fluid is taken to be obeying equations of state p PF =γρ PF with γ∈[0,1]. The dark energy is considered to be obeying a quintessence-like equation of state where the dark energy obeys equation of state p DE =ωρ DE where ω∈[−1,0]. Exact solutions to the corresponding Einstein field equations are obtained. Some special cases are discussed and studied. Further more power law models and exponential models are investigated.  相似文献   

20.
We present a theoretical study of an early dark energy (EDE) model. The equation of state ω(z) evolves during the thermal history in a framework of a Friedmann-Lemaitre-Robertson-Walker Universe, following an effective parametrization that is a function of redshift z. We explore the evolution of the system from the radiation domination era to the late times, allowing the EDE model to have a non-negligible contribution at high redshift (as opposed to the cosmological constant that only plays a role once the structure is formed) with a very little input to the Big Bang Nucleosynthesis, and to do so, the equation of state mimics the radiation behaviour, but being subdominant in terms of its energy density. At late times, the equation of state of the dark energy model asymptotically tends to the fiducial value of the De Sitter domination epoch, providing an explanation for the accelerated expansion of the Universe at late times, emulating the effect of the cosmological constant. The proposed model has three free parameters, that we constrain using SNIa luminosity distances, along with the CMB shift parameter and the deceleration parameter calculated at the time of dark energy - matter equality. With full knowledge of the best fit for our model, we calculate different observables and compare these predictions with the standardΛCDM model. Besides the general consent of the community with the cosmological constant, there is no fundamental reason to choose that particular candidate as dark energy. Here, we open the opportunity to consider a more dynamical model, that also accounts for the late accelerated expansion of the Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号