首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Using calculations of the magnetic field in the solar atmosphere in the potential approximation, it is shown that, (1) as distance R from the Sun’s center grows, the area of the positive magnetic field (S +field) in 10-deg latitude zones tends to 100% (0%) in the neighborhood of the solar minimum. At the distance R = 2.5R (R is the solar radius), these values of the positive field are observed during ≈(12–55) Carrington rotations (CRs) for solar minima between neighboring cycles; (2) polar magnetic field reversals can occur repeatedly. Note that a polar reversal at large heights ends by 6–16 Carrington rotations earlier than on the Sun’s surface. On the Sun’s surface, a field polar reversal begins earlier at lower latitudes than at high ones; (3) for each longitude at different Rs and separately for each solar hemisphere the radial component of the field was averaged on synoptic maps in the 0°–40° latitude range. It is established that the T R rotation periods of the boundaries between the sectors (areas of longitudes with the same sign of the averaged field) can be shorter than, longer than, and equal to Carrington solar rotation period T CR. It turned out that boundaries with T R < T CR are observed at all heights, while boundaries with T R > T CR are observed at relatively small heights.  相似文献   

2.
Laboratory analogue model magnetic measurements are carried out for a model of the region including Tasmania, Bass Strait with its highly conductive deep sedimentary basins, and the south coast of mainland Australia. The model source frequencies used simulate naturally occurring geomagnetic variations of periods 5–120 min. In-phase and quadrature magnetic Hx, Hy and Hz field measurements for the modelled region are presented for an approximately uniform overhead horizontal source field for E-polarization (electric field of the source in the N-S direction) and for H-polarization (electric field of the source in the E-W direction). Large anomalous in-phase and quadrature model magnetic fields are observed over Bass Strait and the coastal regions at short periods for both E- and H-polarization, but with increasing period, the field anomalies decrease more rapidly for E-polarization, than for H-polarization. The difference in response with polarization for the Bass Strait region is attributed to current induced in the deep ocean, for all periods, being channelled through Bass Strait for H-polarization but not for E-polarization. The persistent large coastal field anomalies elsewhere, for H-polarization, can be accounted for by the coastal current concentrations due to currents induced in the deep ocean for all periods deflected to the south and to the north by the shelving sea-floor and channelled through Bass Strait and around the southern coast of Tasmania. The phenomena of current deflection and channelling for H-polarization for the geometry of the southern Australia coastline and associated ocean bathymetry is particularly effective in producing field anomalies for a large period range.The coastal horizontal Hx and Hy field anomalies, present for E-polarization at short periods and for H-polarization at all periods, do not extend far inland, and thus, for inland station sites somewhat removed from the coast, should not present serious problems for magnetic soundings in field work. The sharp vertical field (Hz) gradient over Tasmania at short periods, which is predominantly in the E-W direction for E-polarization and the N-S direction for H-polarization, is strongly frequency dependent, becoming almost undetectable at 60 min. The behaviour of the Hz field gradients, however, are very similar from traverse to traverse over inland Tasmania, and thus, the effects of the ocean should not present too serious a problem in the interpretation of field station studies. The discrepancies between model and field station results should be useful in mapping geological boundaries in the region.  相似文献   

3.
The effect of auroral electrojets on the variations in the low-latitude geomagnetic disturbances and Dst during a strong magnetic storm of November 20–21, 2003, with Dst ≈ ?472 nT has been studied based on the global magnetic observations. It has been indicated that the magnetospheric storm expansive phase with Δt ≈ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 30–100 nT in the premidnight-dawn sector. A growth of negative low-latitude ΔH values and Dst is mainly caused by regular convection electrojets with Δt ≥ 10 h, the centers of which shift to latitudes of ~ 50°–55° during the storm development. It has been established that the maximal low-latitude values of the field ΔH component at 1800–2400 MLT are observed when the auroral luminosity equatorward boundary shifts maximally southward during an increase in the negative values of the IMF B z component. It has been assumed that, during this storm, a magnetic field depression at low latitudes was mainly caused by an enhancement of the partially-ring current which closes through field-aligned currents into the ionosphere at the equatorward boundary of the auroral luminosity zone.  相似文献   

4.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

5.
It has been indicated that the cross section of the streamer belt in the solar corona and its extension in the heliosphere—heliospheric plasma sheet (HPS)—have the form of two radially oriented closely located (at a distance of d ≈ 2.0–2.5° in the heliocentric coordinate system) rays with increased and generally different densities. The angular dimensions of the rays are ≈d. The neutral line of the magnetic field in the corona and the related sector boundary in the Earth’s orbit are located between the peaks of densities of these two rays. In the events, during which the true sector boundary coincides with the heliospheric current sheet, the transverse structure of the streamer belt in the heliosphere (or the HPS structure) is quasistationary; i.e., this structure slightly changes when the solar wind moves from the Sun to the Earth in, at least, 50% of cases. A hypothesis that a slow solar wind, flowing in the rays with increased density of the streamer belt, is probably generated on the Sun’s surface rather than at the top of the helmet, as was assumed in [Wang et al., 2000], is put forward.  相似文献   

6.
An active aurora was observed at Eureka, Canada (88.9° N magnetic) following the arrivalat the magnetopause of the shock front resulting from the solar Coronal Mass Ejection of 6January 1997. This onset at 02:20 UT on 10 January marked the beginning of an aurora whichcontinued until at least 15:00 UT on 11 January, as viewed from both Eureka and the CANOPUSsite at Ft Smith (67.8° N magnetic). There were enhanced OI 630 nm polar F-region emissionsthroughout this period, with the IMF Bz controlling their form. When Bz was positive, there were continuous polar arcs; when Bzturned negative there were F-layer patches on open field lines. While the strong Hβ observed over Ft Smith (240 R) in addition to the extended 630 nm emissions and theirpersistence over two days suggested a red aurora of global proportions, it apparently did notextend to latitudes below 60°. There was a moderate magnetic storm associated with the aurora,but the Dst index reached only −81 nT on 10 January.  相似文献   

7.
The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength Bmax, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters Bmean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.  相似文献   

8.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

9.
The solar magnetic field B s at the Earth’s projection onto the solar-wind source surface has been calculated for each day over a long time interval (1976–2004). These data have been compared with the daily mean solar wind (SW) velocities and various components of the interplanetary magnetic field (IMF) near the Earth. The statistical analysis has revealed a rather close relationship between the solar-wind parameters near the Sun and near the Earth in the periods without significant sporadic solar and interplanetary disturbances. Empirical numerical models have been proposed for calculating the solar-wind velocity, IMF intensity, and IMF longitudinal and B z components from the solar magnetic data. In all these models, the B s value plays the main role. It is shown that, under quiet or weakly disturbed conditions, the variations in the geomagnetic activity index Ap can be forecasted for 3–5 days ahead on the basis of solar magnetic observations. Such a forecast proves to be more reliable than the forecasts based on the traditional methods.  相似文献   

10.
The properties of the 12-h artifact in the data of the SDO/HMI instrument (Helioseismic and Magnetic Imager) caused by the nonzero radial velocity of the station relative to the Sun are investigated. The study has been carried out with respect to long-period oscillations of the magnetic field of sunspots for different station positions in the Earth’s orbit by the alternative spectral method of singular decomposition of the signal CaterPillarSSA. Features of artifact filtering, both in special positions of the station (at the points of aphelion and perihelion) and at arbitrarily selected orbital points, are considered. It is shown that the 12-h artifact mode can be completely filtered from the time series of the observed variable, not only at these two orbital points (because of the symmetry of the station’s radial velocity with respect to the zero mean here) but also at any others. It is shown that only a 12-h mode is physically justified, while the 24-h harmonic appears only as an artifact in the Fourier decomposition of the amplitude-modulated signal. It is emphasized that the values of the magnetic field measured with SDO/HMI are sensitive only to the station’s radial velocity absolute values with respect to the Sun and do not depend on its direction. It has been noted that the periods of sunspot oscillation as a whole obtained from SDO/HMI data after orbital artifact filtration fit well into the dependence diagram of the period of sunspot oscillations on the value of its magnetic field strength constructed earlier by SOHO/MDIdata.  相似文献   

11.
The power spectra of time variations in the electric field strength in the near-Earth’s atmosphere and in the geomagnetic field horizontal component, which were simultaneously observed at the Paratunka observatory (φ = 52°58.3′ N; λ = 158°14.9′ E) in September 1999, have been studied. The periods of the day (including sunrise, sunset, and night) have been considered. It has been indicated that oscillations with periods T ~ 2.0–2.5 h are present in the power spectra of these parameters during the day. The intensity of these oscillations increases noticeably and the oscillations in the band of periods T < 1 h increase simultaneously in the field strength power spectra at sunrise. The variations in the argument of the cross-spectrum of these parameters indicated that oscillations in the 2.0–2.5 h period band are caused by sources that are located above the ionospheric dynamo region; at the same time, oscillations in the 0.5–1 h period band are caused by sources in the lower atmosphere. A possible mechanism by which these oscillations are generated, related to the vortex motion of convective cells that originate at sunrise in the boundary atmospheric layer, is proposed.  相似文献   

12.
—Maximum entropy spectral analysis (MESA) has been applied to 24 series of hourly daily data and only one daily mean series for the horizontal (H) and vertical (Z) components of the geomagnetic field for the year 1983 as observed at Narssarssuaq, Greenland (71.2°N, 36.7°E) (gm coordinate). The method has isolated some prominent medium frequency signal components. The maximum peaks for H are at 06 hr (0.174 cycles per day (cpd), 3.2 × 104 db) and 08 hr (0.09 cpd, 3.5 × 104 db). Similarly, the maximum peak in Z is observed at 04 hr (0.114 cpd, 5.7 × 104 db). The spectral results for the daily-mean data indicate periods are greater than two days, with 178.5 days (nearly semiannual) being common to both H and Z. Other harmonics have been found for all the series of H and Z components which are mainly caused by the "Effective Period", i.e., the period produced by the combined effect of the sunspot numbers and the sun’s rotation period. Such frequencies correspond very well with those found in the geomagnetic indices A p ?, C p and AE. This suggests that the disturbance transient variations are caused by viscous interaction of the solar energies emanating from sunspot regions with the outermost magnetospheric boundary which, in turn, influences the magnetosphere-iono sphere coupling and produces the medium intensity long-duration continuous auroral activities (MILD CAAs) over high latitude regions. Thus, the higher latitude geomagnetic activities are nothing but the "effective period driven MILDCAAs" having a recurrence tendency of 27/n, where n is an integer.  相似文献   

13.
Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (H) at magnetometers near the equator and about 6–9° away from the equator, ΔH, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (F10.7=80, 140 and 200 units) variations of ΔH in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of ΔH to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of ΔH and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.  相似文献   

14.
The results of processing and analyzing the instrumental observations of the Earth’s magnetic field at the Geophysical Observatory Mikhnevo of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (IGD RAS) for 2010–2015 are presented. Quasi-harmonic components with the periods close to the lunar–solar tidal waves are revealed in the spectra of geomagnetic variations over a period of 0.4 to 30 days. The elliptical S1 tidal wave which is detected in the geomagnetic variations has modulations with periods of 1/3, 1/2, and 1 year. The spectra of the geomagnetic variations contain peaks corresponding to the free oscillations of the Earth. The analysis of the time series of the magnetic field for the period of the strong earthquakes in the absence of geomagnetic disturbances revealed the fine structure of the Earth’s fundamental spheroidal mode 0S2, which splits into five singlets. The established features of the spectrum of geomagnetic variations are helping the development of the new method for studying the deep structure of the Earth and the properties of the inner geospheres for estimating the viscosity of the Earth’s outer core and dynamics of the current systems in the outer (liquid) core, as well as for exploring, with the use of empirical data, the general regularities governing the regimes of energy exchange processes in the geospheres.  相似文献   

15.
— We have evaluated how the parameters prescribing the slip-dependent constitutive law are affected by temperature and effective normal stress, by conducting the triaxial fracture experiments on Tsukuba-granite samples in seismogenic environments, which correspond to a depth range to 15 km. The normalized critical slip displacement D c almost remains constant below 300oC (insensitive to both temperature and effective normal stress σ n eff); D c increases with increasing temperature above 300 °C, and the rate of D c increase with temperature tends to be largest at higher σ n eff. The breakdown stress drop Δτ b for the granite at constant σ n eff is roughly 80 MPa below 300 °C, and does not depend on σ n eff. Above 300 °C, Δτ b decreases gradually with increasing temperature, and the rate of Δτ b reduction with temperature increases at higher σ n eff. The peak shear strength τ p increases nearly linearly with increasing σ n eff below 300 °C. However, τ p becomes lower above 300 °C, deviating from the linear relation extrapolated from below 300 °C. This is consistent with the onset of crystal plastic deformation mechanisms of Tsukuba granite.  相似文献   

16.
In 1995–1996, observations were carried out at Norilsk (geomagnetic latitude and longitude 64.2°N and 160.4°E) to determine dynamic parameters of irregularities in the high-latitude ionosphere. The short-baseline spaced-receiver method that has been implemented at the ionospheric facility of the Norilsk Integrated Magnetic–Ionospheric Station, provides a means of simultaneously measuring parameters of small-scale irregularities (spatial scale of 3–5 km) by the Similar-Fading Method (SFM), as well as of medium-scale irregularities (time scale of 10–30 min, spatial scale of hundreds of kilometres) by the Statistical Angle-of-arrival and Doppler Method (SADM). About 20 h of the observational data for the F2-layer under quiet geomagnetic conditions (Kp < 3), 20 h under disturbed conditions (Kp ≥ 3) and about 15 h for the sporadic E-layer (Kp ≈ 3) were processed. It has been found that the propagation directions and velocities of different-scale irregularities do not coincide. Small-scale irregularities of the F2-layer travel predominantly eastward or westward. The velocity of the F2-layer irregularities is about 100 m/s, and under disturbed conditions it is up to 200–250 m/s. Small-scale irregularities of the sporadic E-layer travel mostly in the northward direction. It is confirmed that the Es-layer is characterised by high velocities of the irregularities (as high as 1000 m/s). Medium-scale irregularities with periods in the range of 10–30 min travel mostly in a southward direction with velocities of 20–40 m/s.  相似文献   

17.
The major (M w = 8.8) Chilean earthquake of 27 February 2010 generated a trans-oceanic tsunami that was observed throughout the Pacific Ocean. Waves associated with this event had features similar to those of the 1960 tsunami generated in the same region by the Great (M w = 9.5) 1960 Chilean Earthquake. Both tsunamis were clearly observed on the coast of British Columbia. The 1960 tsunami was measured by 17 analog pen-and-paper tide gauges, while the 2010 tsunami was measured by 11 modern digital coastal tide gauges, four NEPTUNE-Canada bottom pressure recorders located offshore from southern Vancouver Island, and two nearby open-ocean DART stations. The 2010 records were augmented by data from seven NOAA tide gauges on the coast of Washington State. This study examines the principal characteristics of the waves from the 2010 event (height, period, duration, and arrival and travel times) and compares these properties for the west coast of Canada with corresponding properties of the 1960 tsunami. Results show that the 2010 waves were approximately 3.5 times smaller than the 1960 waves and reached the British Columbia coast 1 h earlier. The maximum 2010 wave heights were observed at Port Alberni (98.4 cm) and Winter Harbour (68.3 cm); the observed periods ranged from 12 min at Port Hardy to 110–120 min at Prince Rupert and Port Alberni and 150 min at Bamfield. The open-ocean records had maximum wave heights of 6–11 cm and typical periods of 7 and 15 min. Coastal and open-ocean tsunami records revealed persistent oscillations that “rang” for 3–4 days. Tsunami energy occupied a broad band of periods from 3 to 300 min. Estimation of the inverse celerity vectors from cross-correlation analysis of the deep-sea tsunami records shows that the tsunami waves underwent refraction as they approached the coast of Vancouver Island with the direction of the incoming waves changing from an initial direction of 340° True to a direction of 15° True for the second train of waves that arrived 7 h later after possible reflection from the Marquesas and Hawaiian islands.  相似文献   

18.
Hourly foF2 data from over 100 ionosonde stations during 1967–89 are examined to quantify F-region ionospheric variability, and to assess to what degree the observed variability may be attributed to various sources, i.e., solar ionizing flux, meteorological influences, and changing solar wind conditions. Our findings are as follows. Under quiet geomagnetic conditions (Kp<1), the 1-σ (σ is the standard deviation) variability of Nmax about the mean is approx. ±25–35% at ‘high frequencies’ (periods of a few hours to 1–2 days) and approx. ±15–20% at ‘low frequencies’ (periods approx. 2–30 days), at all latitudes. These values provide a reasonable average estimate of ionospheric variability mainly due to “meteorological influences” at these frequencies. Changes in Nmax due to variations in solar photon flux, are, on the average, small in comparison at these frequencies. Under quiet conditions for high-frequency oscillations, Nmax is most variable at anomaly peak latitudes. This may reflect the sensitivity of anomaly peak densities to day-to-day variations in F-region winds and electric fields driven by the E-region wind dynamo. Ionospheric variability increases with magnetic activity at all latitudes and for both low and high frequency ranges, and the slopes of all curves increase with latitude. Thus, the responsiveness of the ionosphere to increased magnetic activity increases as one progresses from lower to higher latitudes. For the 25% most disturbed conditions (Kp>4), the average 1-σ variability of Nmax about the mean ranges from approx. ±35% (equator) to approx. ±45% (anomaly peak) to approx. ±55% (high-latitudes) for high frequencies, and from approx. ±25% (equator) to approx. ±45% (high-latitudes) at low frequencies. Some estimates are also provided on Nmax variability connected with annual, semiannual and 11-year solar cycle variations.  相似文献   

19.
Temporal variations of the maximum (B max) and average (〈B〉) magnetic inductions, minimum (α min) and average (〈α〉) inclination angles of the field lines to the radial direction from the center of the Sun, and areas of the sunspot umbra S in the umbra of single sunspots during their passage across the solar disk are investigated. The variation of the properties of single sunspots has been considered at different stages of their existence, i.e., during formation, the “quiet” period, and the disappearance stage. It has been found that, for the majority of the selected single sunspots, there is a positive correlation between B max and S and between 〈B〉 and S defined at different times during the passage of sunspots across the solar disk. It is shown in this case that the nature of the dependence between the parameters α min and B max, α min and S, as well as between 〈α〉 and 〈B〉, 〈α〉 and S, can vary from sunspot to sunspot, but for many sunspots the inclination angle of the field lines decreases on average with the growth of the sunspot umbra area and the field strength.  相似文献   

20.
Special methods for processing TV images have been used to study the characteristics of nighttime auroras based on the observations at high-latitude observatories on Spitsbergen. Weak subvisual auroras (SVAs), originating 3°–4° north of brighter auroras in the auroral oval, have been detected in the interval 1900-0400 MLT. The average lifetime of SVAs is approximately 7 min, and the average velocity of the equatorward shift is ~0.6 km/s. SVAs were observed during relatively quiet periods, when the IMF B z component is mainly positive. However, SVAs are not polar-cap auroras since they are oriented from east to west rather than toward the Sun. The optical observations indicate that the SVA intensity is 0.2–0.5 and 0.1–0.3 kR in the 630 and 557.7 nm emissions, respectively. The average ratio of the emission intensities (I 5577/I 6300) is about 0.5. According to the direct satellite observations, the SVA electron spectrum has a maximum at 0.4–1.0 keV. In this case the energy flux of precipitating electrons is approximately an order of magnitude as low as such a flux in brighter auroral arcs in the auroral oval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号