首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A first theoretical work is presented to study the propagation of two-solitons in an electron acoustic waves (EAWs) within the theoretical framework of the Tsallis statistical mechanics. For this purpose, cylindrical and spherical Korteweg-de Vries (KdV) equations are derived for electron acoustic solitary waves (EASWs) in an unmagnetized three species plasma system comprised of cold electrons, immobile ions and hot electrons featuring Tsallis statistics by employing the standard reductive perturbation method. The effects of electron nonextensivity and the fractional number density of the hot electrons relative to that of the cold ones number density (α) on the profiles of two-soliton structures are investigated numerically. Results would be helpful for understanding the localized structures that may occur in space plasmas.  相似文献   

2.
In the present paper we investigate the nonlinear wave structures of electron acoustic waves (EAWs) in an unmagnetized quantum plasma consisting of cold and hot electrons and ions. The one-dimensional quantum hydrodynamic model is used to study the quantum correction of the well known EAWs. Computational investigations have been performed to examine the effects of quantum diffraction and Mach number on nonlinear waves. It is shown that for Mach number M<1, soliton solution exist and for M>1, quasi-periodic and periodic type solution exist. The effects of other several parameters on the properties of EAWs are also discussed.  相似文献   

3.
Electron acoustic solitary waves in a collisionless plasma consisting of a cold electron fluid and non-thermal hot electrons are investigated by a direct analysis of the field equations. The Sagdeev potential is obtained in terms of electron acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the electron acoustic solitary waves as well as the parametric regime where the solitons can exist are very sensitive to the population of energetic non-thermal hot electrons. The soliton and double layer solutions are obtained as a small-amplitude approximation. The effect of non-thermal hot electrons is found to significantly change the properties of the electron acoustic solitary waves (EAWs). A comparison with the Viking Satellite observations in the day side auroral zone is also discussed.  相似文献   

4.
Bifurcations of nonlinear electron acoustic solitary waves and periodic waves in an unmagnetized quantum plasma with cold and hot electrons and ions has been investigated. The one dimensional quantum hydrodynamic model is used to study electron acoustic waves (EAWs) in quantum plasma. Applying the well known reductive perturbation technique (RPT), we have derived a Korteweg-de Vries (KdV) equation for EAWs in an unmagnetized quantum plasma. By using the bifurcation theory and methods of planar dynamical systems to this KdV equation, we have presented the existence of two types of traveling wave solutions which are solitary wave solutions and periodic traveling wave solutions. Under different parametric conditions, some exact explicit solutions of the above waves are obtained.  相似文献   

5.
The propagation of nonlinear electron-acoustic waves (EAWs) in an unmagnetized collisionless plasma system consisting of a cold electron fluid, superthermal hot electrons and stationary ions is investigated. A reductive perturbation method is employed to obtain a modified Korteweg–de Vries (mKdV) equation for the first-order potential. The small amplitude electron-acoustic solitary wave, e.g., soliton and double layer (DL) solutions are presented, and the effects of superthermal electrons on the nature of the solitons are also discussed. But the results shows that the weak stationary EA DLs cannot be supported by the present model.  相似文献   

6.
7.
Electron acoustic blow up solitary waves and periodic waves are studied in a classical unmagnetized plasma containing cold electron fluid, kappa distributed hot electrons and stationary ions. We obtain Korteweg-de Vries (KdV) equation for electron acoustic waves (EAWs) using the reductive perturbation technique (RPT). Applying bifurcation theory of planar dynamical systems to the obtained KdV equation, we prove the existence of electron acoustic blowup solitary and periodic wave solutions. Depending on different physical parameters, two types of exact explicit solutions of the mentioned waves are derived. Our model may be applied to explain blow up solitary and periodic wave features that may occur in the planetary magnetosphere and the plasma sheet boundary layer.  相似文献   

8.
A theoretical investigation is carried out for the nonlinear properties of small amplitude electron acoustic solitary waves (EAWs) in an unmagnetized collisionless plasma consisting of a cold electron fluid and hot electrons obeying κ velocity distribution, and stationary ions. The Korteweg de Vries (KdV) equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (KdV-type) equation that accounts for the higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting from higher-order perturbation theory has been found using the renormalization method. The effects of the spectral index κ and the higher-order corrections are found to significantly change the properties (viz. the amplitude, width, electric field ) of the EASWs. A comparison with the Viking Satellite observations in the dayside auroral zone are also discussed.  相似文献   

9.
Double layers (DLs) structures in a collisionless Lorentzian plasma consisting of warm ions and two-temperature superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to extended Korteweg-de Vries (EK-dV) equation. It is shown that in temperatures lower than critical value for densities around first critical concentrations of cold electrons ( \(d \to d_{c_{1}}\) ) DL structures coexist. The effects of cold to hot electron density ratio d, cold to hot electrons temperature ratio σ, spectral index of cold and hot electrons κ c and κ h , ion temperature δ on DLs structure are also, discussed.  相似文献   

10.
Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa distributed) cool and hot electrons have been investigated using non-perturbative approach. We have transformed basic model equations to an ordinary differential equation involving electrostatic potential. Then we have applied the bifurcation theory of planar dynamical systems to the obtained equation and we have proved the existence of solitary wave solutions and periodic wave solutions. We have derived two exact solutions of solitary and periodic waves depending on the parameters. From the solitary wave solution and periodic wave solution, we have shown the effects of density ratio p of cool electrons and ions, spectral index κ, and temperature ratio σ of cool electrons and hot electrons on characteristics of ion acoustic solitary and periodic waves.  相似文献   

11.
Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey \(q\)-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.  相似文献   

12.
The nonlinear properties of electron acoustic waves in a magnetized plasma consisting of hot electrons, hot ions, and cold electrons are investigated. Using a fluid-guiding center model for the cold electrons and Boltzmann distributions for the hot species, a set of nonlinear mode-coupling equations is derived. Monopole and dipole-vortex solutions are shown to exist for the system of nonlinear equations. Spectrum cascade by mode-coupling in the electron acoustic wave turbulence is investigated. Relevance of our investigation to broadband electrostatic noise (BEN) in the geomagnetic tail is discussed.  相似文献   

13.
Gardner solitons (GSs) and double layers (DLs) of dust ion acoustic (DIA) waves in an electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust) are studied. The reductive perturbation method is employed to derive the Korteweg-de Vries (K-dV), modified K-dV, and standard Gardner equations, which admits solitary wave and DLs solutions for σ around its critical value σ c (where σ c is the value of σ corresponding to the vanishing of the nonlinear coefficient of the K-dV equation). The parametric regimes for the existence of the GSs and DLs, are obtained. The basic features of DIA GSs and DLs (associated with negative structure only) are analyzed. It has been found that the characteristics of DIA GSs and DLs, are different from that of the K-dV solitons and mK-dV (mixed K-dV) solitons. The implications of our results to different space and laboratory plasma situations are discussed.  相似文献   

14.
Generation of quasielastic electron-acoustic (EA) waves head-on collision are investigated in non-planar (cylindrical/spherical) plasma composed of cold electrons fluid, hot electrons obeying nonthermal distribution, and stationary ions. The cylindrical/spherical Korteweg-de Vries (KdV) equations describing two bidirectional EA waves are derived and solved analytically. Numerical investigation have shown that only positive electron-acoustic (EA) structures can propagate and collide. The analytical phase shift |Δ A | due to the non-Maxwellian (nonthermal) electrons is different from the Maxwellian case. Both the hot-to-cold electron number density ratio α and nonthermal parameter β have opposite effect on the phase shift behavior. The phase shift of the spherical EA waves is smaller than the cylindrical case, which indicates that the former is more stable for collision. The relevance of the present study to EA waves propagating in the Earth’s auroral zone is highlighted.  相似文献   

15.
The problem of arbitrary amplitude electron-acoustic solitary (EAS) waves in a plasma having cold fluid electrons, hot superthermal electrons and stationary ions is addressed. The domain of their allowable Mach numbers enlarges as the spectral index κ increases revealing therefore that the “maxwellisation” process of the hot component favors the propagation of the EAS waves. As the superthermal character of the plasma is increased, the potential pulse amplitude increases while its width is narrowed, i.e, the superthermal effects makes the electron-acoustic solitary structure more spiky. As the spectral index κ decreases, the hot electrons are locally expelled and pushed out of the region of the soliton’s localization. A decrease of the fractional number density of the hot electrons relative to that of the cold ones number density would lead to an increase of the depth as well as the width of the localized EAS wave. Our results should help to understand the salient features of large amplitude localized structures that may occur in the plasma sheet boundary layer and may provide an explanation for the strong spiky waveforms that have been observed in auroral electric fields.  相似文献   

16.
Erratum     
L. Trafton 《Icarus》1980,41(2):318-325
The hot Jovian plasma torus discovered by Voyager 1 is responsible for the periodic intensity variations of Io's sodium cloud, which are correlated with Io's magnetic latitude. The plasma torus must be a long-lived phenomenon in spite of its apparent absence at the time of the Pioneer flybys. The hot electrons (~105°K) must be concentrated ~1 RJ from the magnetic equator in order to produce the observed variations. Electron impact ionization in the hot plasma torus is strong enough to form and to maintain Io's ionosphere; the hot plasma torus may be the dominant agent forming the ionosphere. Io's bound atmosphere is dense enough that the plasma torus electrons cannot cause a noticeable variation in its Na emission intensity.  相似文献   

17.
The propagation of an ion-acoustic soliton in a collisionless plasma with adiabatic positive and negative ions (with equal ion temperature) and hot non-isothermal electrons is studied by use of the renormalization method introduced by Kodama and Taniuti in the reductive perturbation method. The basic set of fluid equations describing the system is reduced to a Korteweg-de Vries (K-dV)-type equation for the first-order perturbed potential and to a linear inhomogeneous differential equation to the second-order of the perturbed potential. A stationary solution of the coupled equations is obtained.  相似文献   

18.
19.
The properties of propagation of small amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Korteweg-de Vries (KdV) equation with finite amplitude is derived using a reductive perturbation method. From the solitary solutions of KdV equation, the combined effects of nonextensivity and density ratio are studied on characteristics of ion acoustic (IA) solitary waves. Positive as well as negative polarity solitons exist. Since singularity exists for A=0 so we have also derived modified Korteweg de Vries (mKdV) equation to study the solitonic solution for critical values of physical parameters (q,f,σ). The nonextensivity of electrons (via q) and density ratio of electrons and ions (via f) and temperature ratio (σ) significantly influence the characteristics of ion acoustic solitary structures.  相似文献   

20.
In the present investigation, Electron acoustic solitons in a plasma consisting of cold electrons, superthermal hot electrons and stationary ions are studied. The basic properties of small but finite amplitude solitary potential structures that may exist in a given plasma system have been investigated theoretically using reductive perturbation technique. It has been found that the profile of electron acoustic solitary wave structures is very sensitive to relative hot electron density, $\alpha(=\frac{n_{h0}}{n_{c0}})$ , temperature of hot to cold electrons, $\theta(=\frac{T_{h}}{T_{c}})$ and the spectral index κ. The implications of the present study may be applied to explain some features of large amplitude localized structures that may occur in the plasma sheet boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号