首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
An obstacle to the asteroid mass determination lies in the difficulty in isolating the gravitational perturbation exerted by a single asteroid on the planets, being strongly correlated and mixed up with those of many other asteroids. This hindrance may be avoided by the method of analysis presented here: an asteroid mass is estimated in correspondence with its close encounters with Mars where the acceleration it induces on the planet can be sufficiently disentangled from those generated by the remaining asteroid masses to calculate. We test this technique in the analysis of range observations to Mars Global Surveyor and Mars Express performed from 1999 to 2007. For this purpose, we adopt the dynamical model of the planetary ephemeris INPOP06 (Fienga et al., 2008), which includes the gravitational influences of the 300 most perturbing asteroids of the Martian orbit. We obtain the solutions of 10 asteroid masses that have the largest effects on this orbit over the period examined: they are generally in good agreement with determinations recently published.  相似文献   

2.
The present paper addresses the existence of J 2 invariant relative orbits with arbitrary relative magnitude over the infinite time using the Routh reduction and Poincaré techniques in the J 2 Hamiltonian problem. The current research also proposes a novel numerical searching approach for J 2 invariant relative orbits from the dynamical system point of view. A new type of Poincaré mapping is defined from different central manifolds of the pseudo-circular orbits (parameterized by the Jacobi energy E, the polar component of momentum H z and the measure of distance Δr between the fixed point and its central manifolds) to the nodal periods T d and the drifts of longitude of the ascending node during one period (ΔΩ), which differs from Koon et al.’s (AIAA 2001) definition on central manifolds parameterized by the same fixed point. The Poincaré mapping is surjective because it compresses the three-dimensional variables into two-dimensional images, and the mapping degenerates into a bijective mapping in consideration of the fixed points. An iteration algorithm to the degenerated bijective mapping is proposed from the continuation procedure to perform the ergodic representation of E- and H z -contour maps on the space of T d –ΔΩ. For the surjective mapping with Δr ≠ 0, different pseudo-circular or elliptical orbits may share the same images. Hence, the inverse surjective mapping may achieve non-unique variables from a single image, which makes the generation of J 2 invariant relative orbits possible. The pseudo-circular or elliptical orbits generated from the surjective mapping will be defined in different meridian planes. Hence, the critical contribution of the present paper is the assignment of J 2 invariant relative orbits to different invariant parameters E and H z depending on the E- and H z -contour map, which will hold J 2 invariant relative orbits for extended durations. To investigate the high-order nonlinearity neglected by previous studies, a formation configuration with a large magnitude of 500 km is successfully generated from the theory developed in the present work, which is beyond the scope of the linear conditions of J 2 invariant relative orbits. Therefore, the existence of J 2 invariant relative orbit with an arbitrary relative magnitude over the infinite time is achieved from the dynamical system point of view.  相似文献   

3.
We study close encounters involving massive main-sequence stars and the evolution of the exotic products of these encounters as common-envelope systems or possible hypernova progenitors. We show that parabolic encounters between low- and high-mass stars and between two high-mass stars with small periastrons result in mergers on time-scales of a few tens of stellar free-fall times (a few tens of hours). We show that such mergers of unevolved low-mass stars with evolved high-mass stars result in little mass-loss  (∼0.01 M)  and can deliver sufficient fresh hydrogen to the core of the collision product to allow the collision product to burn for several million years. We find that grazing encounters enter a common-envelope phase which may expel the envelope of the merger product. The deposition of energy in the envelopes of our merger products causes them to swell by factors of ∼100. If these remnants exist in very densely populated environments  ( n ≳ 107 pc−3)  , they will suffer further collisions which may drive off their envelopes, leaving behind hard binaries. We show that the products of collisions have cores rotating sufficiently rapidly to make them candidate hypernova/gamma-ray burst progenitors and that ∼0.1 per cent of massive stars may suffer collisions, sufficient for such events to contribute significantly to the observed rates of hypernovae and gamma-ray bursts.  相似文献   

4.
In an attempt to give a coherent interpretation of the secondary maximum in the density distribution of clusters of galaxies we use an approximate metric tensor proposed by other authors, with the purpose of building a relativistic generalization of the isothermal models of galaxy clusters.Although such a generalization gives rise to oscillations in the density distribution, the quantitative agreement with the observational data is unsatisfactory.The analysis of the metric tensor we have used brings us to point out that (i) the approximation on which the metric is based is not suitable for describing an actual galaxy cluster and (ii) the dynamical conditions of clusters require inclusion of a cosmological expansion, and of anisotropic distribution function in the phase-space.  相似文献   

5.
We describe a parallel hybrid symplectic integrator for planetary system integration that runs on a graphics processing unit (GPU). The integrator identifies close approaches between particles and switches from symplectic to Hermite algorithms for particles that require higher resolution integrations. The integrator is approximately as accurate as other hybrid symplectic integrators but is GPU accelerated.  相似文献   

6.
《Planetary and Space Science》2007,55(10):1299-1309
We investigate a planetary model in spherical symmetry, which consists of a solid core and an envelope of ideal and isothermal gas, embedded in a gaseous nebula. The model equations describe equilibrium states of the envelope. So far, no analytical expressions for their solutions exist, but of course, numerical results have been computed. The point of critical mass, above which no more static solutions for the envelope exist, could not be determined analytically until now. We derive explicit formulas for the core mass and the gas density at the core surface, for the point of critical mass. The critical core mass is also an indicator for the ability of a core to keep its envelope when the surrounding nebula is removed, because at this point, the core's influence extends up to the outer boundary at the Hill radius.  相似文献   

7.
It is shown that close encounters between Jupiter and minor bodies are generally more efficient if the initial orbit of the small body is nearly tangent to that of the planet. Starting from the analysis of the results of previous numerical simulations, some indications on the mobility of the small bodies in the semiaxis-eccentricity diagram are given.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratory di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

8.
Öpik's assumptions on the geometry of particle trajectories leading to and through planetary close encounters are used to compute the distribution of changes in heliocentric orbital elements that result from such encounters for a range of initial heliocentric orbits. Behaviour at encounter is assumed to follow two-body (particle—planet) gravitational scattering, while before and after encounter particle motion is only governed by the force of the Sun. Derivation of these distributions allows precise analysis of the probability of various outcomes in terms of the physical characteristics of the bodies involved. For example, they allow an explanation and prediction of the asymmetry of the extreme energy perturbations for different initial orbits. The formulae derived here may be applied to problems including the original accumulation of planets and satellites, and the continuing evolution of populations of small bodies, such as asteroids and comets.  相似文献   

9.
Abstract— We examined 15 bulk samples of the acapulcoite‐lodranite clan for their major, minor, and trace element concentrations using INAA techniques. Among the analyzed meteorites are 2 new acapulcoites (Dhofar [Dho] 290, Thiel Mountains [TIL] 99002) as well as an additional acapulcoite that has been described previously only in very brief form (Graves Nunataks [GRA] 98028). The petrographic attributes of these 3 samples are addressed thoroughly. We also include petrographic information on 2 acapulcoites from Africa: Northwest Africa (NWA) 725 and NWA 1058. In general, our study strongly supports the widely accepted idea that acapulcoites and lodranites evolved through partial melting and melt migration of metal/sulfide phases and plagioclase. Furthermore, we concur with previous researchers that the original bimodal classification scheme for acapulcoites and lodranites proves to be too simple. Based on our data set, we introduce an alternative, extended scheme. With respect to their elemental distribution patterns, we distinguish 5 subtypes comprising primitive, typical, transitional, and enriched acapulcoites on one hand and lodranites on the other. The chemical distinction between the primitive, typical, and transitional acapulcoites is rather subtle and gradual. It stands in contrast to the clear modifications observed for the signatures of the enriched acapulcoites and the lodranites. The definition of subcategories basically reflects the concentrations of 2 key elements: K and Se. We note, however, that the assignment of subgroups may not be exclusively inferred from elemental abundances but should also consider additional petrographic information.  相似文献   

10.
11.
Single close encounters between Jupiter and about 3000 hypothetical minor bodies, initially on elliptical orbits, have been studied computing the evolution of the three-body system Sun-Jupiter-object, by means of a new numerical method of integration. The fictitious population processed contains almost all the orbits which allow a close approach to the planet. The efficiency of a single encounter in varying the orbital parameters of the objects resulted to be generally poor, as it is shown by the distributions of the orbital parameter variations. Collisions and ejections from the solar system on hyperbolic orbits are little numerous; some temporary satellite capture have been recognised. The results of this work show that any attempt to study the close encounter event by means of two distinct two-body problems is physically meaningless because the mid-range perturbations, disregarded in such cases, are very far from being negligible.  相似文献   

12.
A dynamical, homogeneous model of the chromosphere-corona transition region and of the lower corona is presented, based on the hydrodynamical equations and on a semi-empirical relation deduced from radio observations. The model is shown to be in agreement with radio and UV observations and with the particle flux given by solar wind measurements. A comparison with the analogous static model shows that dynamical effects are very small. From the model it is possible to give an estimate of the energy dissipated at each level by the waves that propagate in the solar atmosphere. It is shown that this energy source cannot be neglected with comparison to the usual conductive, convective and radiative sources. The importance of the kinetic energy flux connected with the spicules is also discussed.  相似文献   

13.
We have developed a new dynamical model of the main Uranian satellites, based on numerical integration and fitted to astrometric observations. Old observations, as well as modern and Voyager observations have been included. This model has provided ephemerides that have already been used for predicting the mutual events during the PHE-URA campaign. It is updated here to improve the prediction of these events. We also tried to assess the real accuracy of our ephemerides by checking the distance differences of the Uranian satellites, using simultaneously our former and new model. It appears that both solutions are very close to each other (within few tens of kilometers), and most probably accurate at the level of few hundred of kilometers. Using new available meridian observations of the Uranian satellites, we have checked the Uranian ephemeris accuracy using DE406. An error of more than 0.1 arcsec on the Uranian position is observed.  相似文献   

14.
Numerical simulations of 200 mutually colliding non-identical particles indicate that the equipartition of random kinetic energy is possible only in systems having a narrow distribution of particle masses. Otherwise the random energy is concentrated on heavy particles. The form of the velocity distribution versus particle mass depends also on the elastic properties of the particles, and on the relative importance of the particle size. If the coefficient of restitution is a weakly decreasing function of impact velocity, a large difference in the equilibrium velocities of largest and smallest particles is possible. On the other hand, if the elasticity drops to a low level even in the small velocity regime, the dispersion of velocities is maintained by finite size and differential rotation, and the velocities of smallest particles are, at most, slightly larger than those of the largest ones. The results of simulations are consistent with the predictions of the collisional theory of non-identical particles (Hämeen-Anttila, 1984). The application to Saturn's rings indicates that the geometric thickness of cm-sized particles is of the order of 50 m in the rarefied regions of the rings. Without the gravitational encounters a thickness of about 30 m is derived. These estimations are made by using the latest measurements (Bridges et al., 1984) for the restitution coefficient of icy particles.  相似文献   

15.
The hydrodynamic equations for an ideal, inviscid, fully ionized hydrogen gas in a gravitational, but not magnetic, field are solved by an explicit Lax-Wendroff two-step technique using a one-dimensional slab symmetry. Radiation and thermal conductivity are included. The model spans 100000 km starting from the chromosphere-corona transition region. An initially isothermal gas is seen to evolve coronal properties in 4000 s, by which time it settles into dynamic equilibrium characterized by a 2000 km transition region, a temperature maximum of 1.6 × 106 K at a height of 60000 km, and a solar wind mass flux of 10-9 g cm-2 s-1.  相似文献   

16.
Yeh  Tyan 《Solar physics》1989,124(2):251-269
A dynamical model of prominence loops is constructed on the basis of the theory of hydromagnetic buoyancy force. A prominence loop is regarded as a flux rope immersed in the solar atmosphere above a bipolar region of the photospheric magnetic field. The motion of a loop is partitioned into a translational motion, which accounts for the displacement of the centroidal axis of the loop, and an expansional motion, which accounts for the displacement of the periphery of the loop relative to the axis. The translational motion is driven by the hydromagnetic buoyancy force exerted by the surrounding medium of the solar atmosphere and the gravitational force exerted by the Sun. The expansional motion is driven by the pressure gradient that sustains the pressure difference between internal and external gas pressures and the self-induced Lorentz force that results from interactions among internal currents. The main constituent of the hydromagnetic buoyancy force on a prominence loop is the diamagnetic force exerted on the internal currents by the external currents that sustain the pre-existing magnetic field. By spatial transformation between magnetic and mechanical stresses, the diamagnetic force is manifested through a mechanical force acting at various mass elements of the prominence. For a prominence loop in equilibrium, the gravitational force is balanced by the hydromagnetic buoyancy force and the Lorentz force of helical magnetic field is balanced by a gradient force of gas pressure.  相似文献   

17.
18.
We study tidal synchronization and orbit circularization in a minimal model that takes into account only the essential ingredients of tidal deformation and dissipation in the secondary body. In previous work we introduced the model (Escribano et al. in Phys. Rev. E, 78:036216, 2008); here we investigate in depth the complex dynamics that can arise from this simplest model of tidal synchronization and orbit circularization. We model an extended secondary body of mass m by two point masses of mass m/2 connected with a damped spring. This composite body moves in the gravitational field of a primary of mass Mm located at the origin. In this simplest case oscillation and rotation of the secondary are assumed to take place in the plane of the Keplerian orbit. The gravitational interactions of both point masses with the primary are taken into account, but that between the point masses is neglected. We perform a Taylor expansion on the exact equations of motion to isolate and identify the different effects of tidal interactions. We compare both sets of equations and study the applicability of the approximations, in the presence of chaos. We introduce the resonance function as a resource to identify resonant states. The approximate equations of motion can account for both synchronization into the 1:1 spin-orbit resonance and the circularization of the orbit as the only true asymptotic attractors, together with the existence of relatively long-lived metastable orbits with the secondary in p:q (p and q being co-prime integers) synchronous rotation.  相似文献   

19.
The radiation field along an irradiated surface of a component in a binary system is calculated. The source of irradiation is assumed to be a point source. This is done primarily to understand easily how the incident radiation will get changed after it is being scattered by the atmosphere. It is noticed that the maximum radiation comes from intermediate points of the atmosphere, the reason being that here we have the combined radiation due to the star and incident radiation from the point source outside the star although both are diluted.  相似文献   

20.
D.J. Scheeres  A. Rossi 《Icarus》2004,170(2):312-323
In this paper we study the statistical effect of planetary flybys on the rotation rates and states of Near Earth Objects (NEOs). Our approach combines numerical and analytical methods within a Monte Carlo model that simulates the evolution of the NEO spin rates. We take as input for the simulation a source distribution of spin states and evolve it to find their steady state distribution. In performing this evolution we track the changes in the spin rate and state distribution for the different components of the NEO population. We show that the cumulative effect of planetary encounters is to spin up the overall population of NEOs. This spin up effect holds on average only, and particular members of the population may experience an overall decrease in rotation rate. This effect is clearly seen across all components of the NEO population and is significant both statistically and physically. For initially slow rotators the spin up effect is strong, lowering the mean rotation period by 32%. For faster rotating populations the effect is less, lowering the spin period by 15% for the intermediate case, 6% for fast rotating rubble piles, and 8% for fast rotating monoliths. Physically, the spin up effect pushes 1% of the fast rotating rubble-pile NEOs over the disruption limit, while 6% of these bodies experience a sub-disruption event that could modify their physical structure. For monolithic NEOs, the spin up effect is self-limiting, reaching a minimum spin period of 1.1 hr, with a strong cut-off between 2-3 hr. This has two implications. First, it may not be necessary to invoke the rubble-pile hypothesis to recover a cut-off in spin period. Second, it shows that planetary flybys cannot account for the extremely rapid rotation rates of some small NEOs. We also tested a different balance between the effects of Earth and Venus by treating the Aten sub-class of asteroids separately. Due to increased interactions with the planets, the spin up effect is more pronounced (10%) and disruptions increase by a factor of three. The slow rotation tails of the spin distributions are increased to longer periods, in general, with rotation periods of over 100 hr occurring for a few tenths of a percent for some component populations. Thus, this mechanism may account for some of the noted excess in slow rotators among the NEOs. Planetary flybys also cause NEOs to enter a tumbling state, with approximately 0.5% of the population being placed into a long-axis rotation mode. Finally, based on the evolution of spin states of different components of the NEO population, we compared the evolved states with the measured distribution of NEOs to estimate the relative populations of these components that comprise the NEOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号