首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
占文凤  陈云浩  马伟  周纪  李京 《遥感学报》2010,14(2):379-386
基于简化的城市目标三维结构模型,利用计算机图形学中辐射度方法,对城市目标的热辐射方向性规律进行模拟。在传感器分别位于近地面和卫星轨道时,研究了城市目标各组分在视场内的权重随观测天顶角、方位角和观测距离改变的变化规律。结果表明:城市目标方向亮温地面辐射测量存在显著视场效应。当传感器位于近地面时,在垂直太阳主平面附近,视场效应达到最大。方向亮温随观测距离的改变有明显变化。随着观测距离的增加,视场效应急剧减小。将近地面测量得到的方向亮温与卫星影像计算所得的方向亮温对比时,视场效应是一个必须考虑的因素。  相似文献   

2.
火星表面亮温的时空变化特征分析   总被引:1,自引:0,他引:1  
利用3个火星轨道器获取的热红外波段探测数据,分析了火星表面亮温在时间维上的年际和季节性变化规律,以及空间维上随地形和纬度的变化特征。研究结果表明:(1)5个火星年的表面亮温年际变化幅度均未超出轨道器热红外波段探测数据的精度范围。(2)火星南半球表面亮温的季节性变化幅度大,远日点时期表面亮温随季节的变化基本符合正弦规律且年际差异小,而近日点则有多处明显偏离正弦规律且年际差异较大;北半球表面亮温的季节性变化幅度远小于南半球,且季节特征不明显,受全球性尘暴影响而引起的夜间升温要大于夏季太阳辐射能增加引起的升温。(3)在同一时段,盆地、峡谷等低海拔地形的表面亮温较高,而山峰、高原、台地等高海拔地形的表面亮温一般较低;Olympus Mons地区的表面亮温与高程之间存在相关系数为–0.9072的负相关关系,线性拟合的结果表明该区域海拔每上升1 km,表面亮温下降约1.4 K。(4)表面亮温随纬度的变化总体上满足低纬度高于高纬度的规律,但受到地形等因素的影响,表面亮温最大值出现在偏离赤道的35°S位置,而赤道附近纬度的表面亮温最小值要小于临近稍高纬度位置的最小值;从赤道到两极同纬度表面亮温的差异逐渐减小。  相似文献   

3.
垄行作物玉米方向亮温野外测量中视场角影响的简单分析   总被引:3,自引:4,他引:3  
基于透视原理、地面试验中对于较高目标的观测存在着一定的偏差。这种偏差随传感器高度、观测角度、视场角大小、观测位置等多个因素改变。由于垄行作物空间结构和温度分布的复杂性 ,在采用较大视场角测量方向亮温的地面实验中 ,将不可避免地存在着误差。采用一个简化的三分量二维结构模型对这种误差进行初步的分析与估算。亮温三分量分别为植被、被阳光照到的亮土和植被阴影下的暗土。作物的结构简化为剖面为矩形的无限长平行体。通过对这三个分量在传感器视场中面积权重的计算来模拟目标结构、传感器高度、位置、视场角大小、观测角度等因素对测量结果产生的影响。模拟结果表明 ,在垂直观测中 ,视场中的植被权重往往被高估 ,偏差随传感器高度的降低急剧增加。在倾斜观测中 ,由于一种互补效应的产生 ,偏差被限制在一个较低的范围内。经过分析 ,减小误差的最有效办法是提高传感器高度。最后 ,实验数据与模拟结果进行了比较。恰当地选取模型输入 ,两种数据能非常好的吻合。  相似文献   

4.
微波湿温探测仪(MWHTS)的通道响应函数(SRF)一般被认为近似于矩形函数,然而从实际SRF的测试数据来看,MWHTS各个频段不同通道的SRF存在一定的带内波动。本文利用大气辐射传输模拟器(ARTS)模拟了MWHTS中118 GHz各通道不同场景的亮温谱,并输入至前期建立的MWHTS系统仿真模型中,通过定标得到了仪器的输出亮温,进而评估实测SRF对亮温测量及其反演的大气温度廓线的影响,并利用卫星实测数据进行了对比验证。结果表明,亮温偏差与实际SRF的带内波动呈现线性正相关的关系,当带内波动大于3 dB时,亮温偏差可以达到0.2—0.5 K。SRF的带内波动会造成大气温度廓线反演误差,特别是在高度为1.8 km时,误差最大可以达到0.8—0.9 K,该仿真结果与卫星实测数据结果一致。因此在使用数据同化方法对数值天气预报(NWP)进行模拟时,需要特别注意具有较大SRF带内波动的通道所引起的亮温偏差,这对于未来卫星数据的应用具有重要的研究价值。  相似文献   

5.
掌握非震情况下的热红外亮温背景场及其时空变化规律是有效提取地震红外异常信息的关键.利用2003-2011年NOAA卫星夜间热红外遥感数据构建祁连山和首都圈亮温背景场,分析其时空演化特征.结果表明:红外亮温背景场受季节、地形和断裂活动等多种因素的影响,其中受季节变化影响最大,年变规律明显;不同地理环境,亮温年变特征呈现不同形式,对于地形地貌复杂的地区,亮温变化曲线不稳定,红外亮温与地面高程呈显著的负相关关系,地面高程每增加100 m,亮温降低约0.21 ~ 0.63℃,这与我国气温直减率基本一致;活动断裂带在红外图像上表现为明显的高亮温线性条带或亮温分界带;多年平均背景场平滑了气候等突变信息,呈现出稳定性较强的规律性变化特征,为断裂活动和地震所引起的增温异常检测提供了稳定的亮温变化基准场.  相似文献   

6.
基于热红外成像仪获取的玉米冠层图像,对垄行结构玉米的方向亮温(DBT)进行模型化描述并开展了初步验证工作。模型中假设某一方向上的冠层DBT是组分亮温及各组分在视场中所占面积权重的函数,它们在视场中的比例依赖太阳与传感器的几何位置关系,以及在作物行内,作物行与行之间孔隙的分布。对于玉米冠层的几何特征,简化为横截面是矩形的、其中有空隙透光的一组无限长的平行立方体;立方体内双向孔隙率的方向变化由Kuusk函数来描述。模型模拟表明,玉米亮温组分在视场中的权重具有垄行特性。中午前后,通过对中等密度的冠层DBT模拟,在DBT极坐标图形上发现了一个明显位于垄行方向的热条带的出现,热点出现在太阳位置的周围。最后,利用实地观测的结果与模型模拟结果作对比,对该模型的不足和以后的改进作了初步分析。  相似文献   

7.
玉米地组分亮度温度分类变化研究   总被引:2,自引:4,他引:2  
以玉米整个生长期野外热红外辐射观测数据为基础,对两种组分亮温分类方法作了比较,并对玉米地组分亮温的变化特征展开了分析。结果表明,农田亮温组分的数目和数值随测量时间和日期改变。在整个测量期间,在当地时间中午前后,农田呈现出3个亮温组分植被、被阳光照到的亮土和植被阴影下的暗土。观测早期,植被亮温分布相对集中;随着农田植被覆盖率的增高,植被亮温分布逐步分散,组分间温差缩小,部分亮温值相互重叠。产生这些现象的原因将在以后的研究中加以探讨。  相似文献   

8.
严明  王智勇  汪承义  于冰洋 《测绘学报》2015,44(9):995-1002
采用ISO国际标准大气模型和Owens大气折射系数算法,根据大气层内不同纬度和海拔高度处的大气折射系数分布规律,把地球大气简化为对流层和同温层的双层均匀球形大气,从在轨光学卫星CCD探元视线出发,使用视线跟踪几何算法,计算不同侧视角下大气折射产生的几何位置偏差。结果表明,大气折射几何偏差随卫星观测角的增加而非线性迅速增加。当卫星运行在650km的太阳同步轨道,侧视30°成像时,大气折射产生约2.5m的几何偏差;卫星侧视45°成像时,大气折射产生约9m的几何偏差。在高分辨率敏捷卫星成像和宽视场卫星遥感图像的严密几何定位处理中,使用本文提出的大气折射几何偏差算法和严密几何定位大气折射校正模型,在地心地固坐标系下补偿严密几何模型中存在的大气折射偏差,能够进一步提升高分辨率卫星遥感图像的无控几何定位精度,应用于我国高分系列卫星遥感图像地面几何定位处理。  相似文献   

9.
李丽  乔延利  顾行发  余涛 《遥感学报》2006,10(5):676-682
以典型的垄行作物玉米为研究对象,提出了一种新的视场效应分析方法:网格模型法。该方法将目标空间和测量空间网格化,然后在网格空间计算观测视场内的组分比例,进而确定组合信号值。本文采用网格模型法分析了垄行作物亮叶、暗叶、亮土、暗土四分量在传感器视场中面积权重变化、空隙率的变化、方向亮温的变化、红波段反射率的变化、红外波段反射率的变化以及植被指数NDVI的变化率,研究了不同观测角度情况下视场效应的变化。  相似文献   

10.
针对植被对降水响应分析的多为年际尺度且多用气候影响因子分析的问题,本文提出了一种年际与季节性相结合的时间尺度、气候与土壤因子并重的空间相关性分析法.该方法从降水的季节性规律、植被的物候期角度研究植被的年际、季节性空间变化特征,实现了不同时间尺度、空间尺度上植被变化对降水过程的响应情况的分析研究.研究表明:从季节和年际尺...  相似文献   

11.
伪距偏差是指卫星导航信号非理想特征导致的不同技术状态接收机产生的伪距测量常数偏差。本文将伪距偏差作为一种用户段误差,提出基于并置接收机的伪距偏差计算方法和基于DCB参数的伪距偏差计算方法,以实现伪距偏差与其他误差的分离。然后利用实测数据测量了北斗卫星伪距偏差,结果表明伪距偏差标定序列波动STD约为0.1 m,不随时间明显变化,不同地点接收机测量的伪距偏差具有较好的一致性。在1.5 G频段,北斗卫星B1I频点伪距偏差最大。北斗卫星新体制信号B1C伪距偏差最小,较北斗卫星B1I频点伪距偏差明显改善,也明显好于GPS卫星L1C/A频点伪距偏差。在其他频段,GPS卫星L2C伪距偏差略大于北斗卫星B3I伪距偏差,L5C频点伪距偏差次之,B2a频点伪距偏差最小。最后,利用实测数据分析了伪距偏差对定位精度的影响。结果表明伪距偏差与卫星群延迟参数高度相关。若用户接收机与群延迟参数计算采用的接收机技术状态差异较大,用户接收机定位精度将明显恶化。  相似文献   

12.
Use of GPS tracking data from different dual-frequency receiver types (cross-correlating vs. codeless) has revealed satellite-dependent biases in pseudorange observables P1 (Y-code) and C1 (C/A, Clear Acquisition code). These biases can have a direct effect on clock estimates, carrier phase bias fixing, and other parameters estimated in GPS data processing. A set of satellite-specific compensatory pseudorange offsets is calculated, and each is applied to a wee of daily global network analyses in which satlellite, receiver, atmospheric, and Earth rotation parameters are estimated. Results from these analyses are then compared to those from corresponding baseline cases in which no biases were applied. There is also some evidence that suggests that the pseudorange biases differ even among codeless receiver models. Hence, a second set of offsets is computed on a different basis, and compared with the baseline model in a similar manner. A preliminary examination of C1-P1 variations over time is presented. Finally, recommendations are made for the use of the calculated offsets, and consideration is given to a future dissemination of updates to these values as necessary. ? 2001 John Wiley & Sons, Inc.  相似文献   

13.
The GRACE (Gravity Recovery and Climate Experiment) satellite mission relies on the inter-satellite K-band microwave ranging (KBR) observations. We investigate systematic errors that are present in the Level-1B KBR data, namely in the geometric correction. This correction converts the original ranging observation (between the two KBR antennas phase centers) into an observation between the two satellites’ centers of mass. It is computed from data on the precise alignment between both satellites, that is, between the lines joining the center of mass and the antenna phase center of either satellite. The Level-1B data used to determine this alignment exhibit constant biases as large as 1–2 mrad in terms of pitch and yaw alignment angles. These biases induce non-constant errors in the Level-1B geometric correction. While the precise origin of the biases remains to be identified, we are able to estimate and reduce them in a re-calibration approach. This significantly improves time-variable gravity field solutions based on the CNES/GRGS processing strategy. Empirical assessments indicate that the systematic KBR data errors have previously induced gravity field errors on the level of 6–11 times the so-called GRACE baseline error level. The zonal coefficients (from degree 14) are particularly affected. The re-calibration reduces their rms errors by about 50%. As examples for geophysical inferences, the improvement enhances agreement between mass variations observed by GRACE and in-situ ocean bottom pressure observations. The improvement also importantly affects estimates of inter-annual mass variations of the Antarctic ice sheet.  相似文献   

14.
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne–Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.  相似文献   

15.
This study provides a systemic analysis to identify the biases in estimated satellite clocks and illustrates their effects in precise point positioning (PPP). First, the precise satellite clock estimation method considering pseudorange and carrier phase hardware delays is derived. Two methods for satellite clock estimation are compared, and their equivalency is discussed. The results show that apart from the well-known constant code hardware biases, the time-variant phase hardware biases are also absorbed by the estimated clocks. Also, the satellite clocks contain biases caused by modeling errors. To analyze the effects of these biases, they are grouped into initial clock biases (ICBs) and time-dependent biases (TDBs). Then, a detailed analysis of the impact of the biases on PPP-based troposphere and coordinate estimates is conducted. The experimental analysis demonstrates that TDBs affect positioning and tropospheric estimates, and their impacts are more significant in the static mode. The ICBs affect coordinate accuracy, zenith total delay mean bias, and its standard deviations only at the millimeter level for kinematic and static PPP, which is negligible. However, the ICBs affect the convergence period for both static and real kinematic PPP, and the magnitude of their impact largely depends on data quality. Note that satellites clocks are generally estimated with the P1/P2 and L1/L2 ionospheric-free combinations, and that hardware-specific parts of ICBs and TDBs cancel if users employ the same type of observables as the clock providers. Otherwise, the effects of biases cannot be ignored, especially for triple-frequency applications. Also, modeling-specific parts of ICBs and TDBs are significant in real-time clocks, which also affect user applications. Our conclusion is applicable for understanding the effects of these biases.  相似文献   

16.
The successful launch of five new-generation experimental satellites of the China’s BeiDou Navigation Satellite System, namely BeiDou I1-S, I2-S, M1-S, M2-S, and M3-S, marks a significant step in expanding BeiDou into a navigation system with global coverage. In addition to B1I (1561.098 MHz) and B3I (1269.520 MHz) signals, the new-generation BeiDou-3 experimental satellites are also capable of transmitting several new navigation signals in space, namely B1C at 1575.42 MHz, B2a at 1176.45 MHz, and B2b at 1207.14 MHz. For the first time, we present an initial characterization and performance assessment for these new-generation BeiDou-3 satellites and their signals. The L1/L2/L5 signals from GPS Block IIF satellites, E1/E5a/E5b signals from Galileo satellites, and B1I/B2I/B3I signals from BeiDou-2 satellites are also evaluated for comparison. The characteristics of the B1C, B1I, B2a, B2b, and B3I signals are evaluated in terms of observed carrier-to-noise density ratio, pseudorange multipath and noise, triple-frequency carrier-phase ionosphere-free and geometry-free combination, and double-differenced carrier-phase and code residuals. The results demonstrate that the observational quality of the new-generation BeiDou-3 signals is comparable to that of GPS L1/L2/L5 and Galileo E1/E5a/E5b signals. However, the analysis of code multipath shows that the elevation-dependent code biases, which have been previously identified to exist in the code observations of the BeiDou-2 satellites, seem to be not obvious for all the available signals of the new-generation BeiDou-3 satellites. This will significantly benefit precise applications that resolve wide-lane ambiguity based on Hatch–Melbourne–Wübbena linear combinations and other applications such as single-frequency precise point positioning (PPP) based on the ionosphere-free code–carrier combinations. Furthermore, with regard to the triple-frequency carrier-phase ionosphere-free and geometry-free combination, it is found that different from the BeiDou-2 and GPS Block IIF satellites, no apparent bias variations could be observed in all the new-generation BeiDou-3 experimental satellites, which shows a good consistency of the new-generation BeiDou-3 signals. The absence of such triple-frequency biases simplifies the potential processing of multi-frequency PPP using observations from the new-generation BeiDou-3 satellites. Finally, the precise relative positioning results indicate that the additional observations from the new-generation BeiDou-3 satellites can improve ambiguity resolution performance with respect to BeiDou-2 only positioning, which indicates that observations from the new-generation BeiDou-3 satellites can contribute to precise relative positioning.  相似文献   

17.
Sea surface temperature (SST) retrieved from Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration (NOAA) polar orbiting environmental satellites were validated in the East/Japan Sea (EJS) using surface drifter measurements as ground truths from 2005 to 2010. Overall, the root-mean-square (rms) errors of multichannel SSTs (MCSSTs) and non-linear SSTs (NLSSTs) using global SST coefficients were approximately 0.85°C and 0.80°C, respectively. An analysis of the SST errors (satellite – drifter) revealed a dependence on the amount of atmospheric moisture. In addition, satellite-derived SSTs tended to be related to wind speeds, particularly during the night. The SST errors also demonstrated diurnal variations with relatively higher rms from 0.80°C to 1.00°C during the night than the day, with a small rms of about 0.50°C. Bias also exhibited reasonable diurnal differences, showing small biases during the daytime. Although a satellite zenith angle has been considered in the global SST coefficients, its effect on the SST errors still remained in case of the EJS. Given the diverse use of SST data, the continuous validation and understanding of the characteristic errors of satellite SSTs should be conducted based on extensive in-situ temperature measurements in the global ocean as well as local seas.  相似文献   

18.
We provide suggestions for the approved COSMIC-2 satellite mission regarding the field of view (FOV) and the clock stability of its future GNSS receiver based on numerical analyses using COSMIC GPS data. While the GRACE GPS receiver is mounted on the zenith direction, the precise orbit determination (POD) antennas of COSMIC are not. The COSMIC antenna design results in a narrow FOV and a reduction in the number of GPS observations. To strengthen the GPS geometry, GPS data from two POD antennas of COSMIC are used to estimate its orbits. The phase residuals of COSMIC are at the centimeter level, compared to the millimeter level of GRACE. The receiver clock corrections of COSMIC and GRACE are at the microsecond and nanosecond levels, respectively. The clock spectra of COSMIC at the frequencies of 0–0.005 Hz contain significant powers, indicating potential systematic errors in its clock corrections. The clock stability, expressed by the Allan deviation, of COSMIC ranges from 10?9 to 10?11 over 1 to 104 s, compared to 10?12 to 10?14 for GRACE. Compared to USO-based clock of GRACE, the clock of COSMIC is degraded in its stability and is linked to the reduction of GPS data quality. Lessons for improvement of COSMIC-2 over COSMIC in FOV and receiver clock stability are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号