首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of nonplanar (cylindrical and spherical) ion-acoustic solitary waves (IA SWs) in an unmagnetized, collisionless electron-positron-ion (e-p-i) plasma, whose constituents are q-distributed electrons and positrons and inertial ions, are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation. The basic features of nonplanar IA Gardner solitons (GSs) are discussed. It is found that the properties of nonplanar IA GSs (rarefactive and compressive) are significantly affected by the particle nonextensivity.  相似文献   

2.
Large-amplitude Alfvén waves propagating along the guide magnetic field in a three-component plasma are shown to be spatially localized due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfvén soliton solutions are found to exist in the three-component plasma. The Alfvén solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets.  相似文献   

3.
The KdV equation is derived for weakly nonlinear ion-acoustic waves in an unmagnetized warm dusty plasma with electron inertia. It has been shown that the inclusion of electron inertia and pressure variation of the species not only significantly modifies the basic features (width and amplitude) of dust ion-acoustic solitions, but also introduces a new parametric regime for the existence of positive and negative solitons.  相似文献   

4.
Existence and characteristics of ion-acoustic (IA) wave modulation are studied in a plasma with two-temperature electron satisfying kappa distribution. Based on the multiple time scales perturbation, a nonlinear Schrödinger equation (NLS) is derived. Similar to the case of double Maxwellian electrons, both polarities of envelope soliton can exist over restricted ranges of the fractional hot electron density ratio and two-temperature superthermal electrons. The transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in the presence of cool and hot superthermal electrons. It is shown that the small values of the hot electron populations leads to shrinking the modulation instability region. It is also found the instability growth rate reduces due to the presence of hot electrons. The result of present investigation contributes to the physics of wave modulation in Saturn’s magnetosphere where two-temperature electrons with kappa distribution exist.  相似文献   

5.
A theoretical investigation is carried out for understanding the basic features of oblique propagation of linear and nonlinear ion-acoustic waves subjected to an external magnetic field in an electron-positron-ion plasma which consists of a cold magnetized ion fluid, Boltzmann distributed positron, and electrons obeying a trapped distribution. In the linear regime, two dispersion curves are obtained. It is shown that the positron concentration causes the both modes to propagate with smaller phase velocities. Then, owing to the presence of resonant electrons, the modified Korteweg-de Vries equation describing the nonlinear dynamics of small but finite amplitude ion-acoustic waves is derived. It is found that the effects of external magnetic field (obliqueness), trapped electrons, positron concentration and temperature ratio significantly modify the basic features of solitary waves.  相似文献   

6.
This article presents the first study of the head-on collision of two ion-acoustic solitary waves (IASWs) in magnetized plasmas with nonextensive electrons and positrons using the extended Poincaré-Lighthill-Kuo (PLK) method. The effects of the ion gyro-frequency to ion plasma frequency ratio, the positron to ion number density ratio, the electrons temperature to positrons temperature ratio, and the nonextensive parameter q on the phase shifts are investigated. It is shown that these factors significantly modify the phase shifts.  相似文献   

7.
Ion-acoustic solitary waves in a warm, magnetized plasma with electron inertia have been investigated through Sagdeev pseudopotential method. It has been established the existence of both compressive supersonic solitons, and rarefactive subsonic and supersonic solitons within the parametric domains. The effect of the external magnetic field for generation of the supersonic compressive solitons of constant amplitudes appears to be passive after some critical direction of propagation of the wave. However, up to the critical direction of propagation, the magnetic resistance is found to be quite active to drastically reduce the soliton amplitudes. The generation of rarefactive solitons in this warm magnetized plasma is rather more feasible to be supersonic without electron inertia.  相似文献   

8.
We look for particular solutions to the restricted three-body problem where the bodies are allowed to either lose or gain mass to or from a static atmosphere. In the case that all the masses are proportional to the same function of time, we find analogous solution to the five stationary solutions of the usual restricted problem of constant masses: the three collinear and the two triangular solutions, but now the relative distance of the bodies changes with time at the same rate. Under some restrictions, there are also coplanar, infinitely remote and ring solutions.  相似文献   

9.
A theoretical investigation has been made of electrostatic solitary structures in an electron-positron-ion (e-p-i) plasma, taking nonextensive electrons and nonextensive positrons. By employing the reductive perturbation method, the basic characteristics of ion-acoustic (IA) solitary waves (SWs) in a three-component e-p-i plasma (consisting of negatively charged nonextensive electrons, positively charged nonextensive positrons, and ions) have been addressed. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations are derived and their numerical solutions are obtained. It has been shown that the combined effects of electron nonextensivity, positron nonextensivity, and ions significantly modify the behavior of these electrostatic solitary structures that have been found to exist with positive and negative potential in this plasma model. The present analysis may be useful to understand and demonstrate the dynamical properties of IA SWs in different astrophysical and cosmological scenarios (viz. stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc.).  相似文献   

10.
We derive a mixed modified Korteweg-de Vries (MK-dV) equation from a semi-relativistic ion acoustic wave with hot ions by the fluid approximation. The positive cubic nonlinearity of the mixed MK-dV equation give rise to the periodic progressive waves and the algebraic solitary waves. The periodic wave bears a series of solitary pulses, and the algebraic solitary wave reduces the rarefactive solitary wave in the limit of the particular boundary condition. These nonlinear wave modes explain, respectively, the periodic pulse of the potential and the rarefactive solitary wave of the fine structure observed in space.  相似文献   

11.
The properties of arbitrary amplitude dust ion-acoustic (DIA) solitary waves (SWs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust is studied by the pseudo-potential approach. The effects of ion temperature, resonant electrons, and dust number density are found to significantly modify the basic features of the DIA-SWs as well modify the parametric regime for the existence of compressive DIA-SWs. The pseudo-potential for small but finite amplitude limit is also analytically analyzed.  相似文献   

12.
Results of a laboratory study of electrostatic ion-cyclotron (EIC) waves in a plasma containing K+ (39 amu) positive ions, electrons and C7F14 (350 amu) negative ions are presented. Excitation of the fundamental and higher harmonic light and heavy ion EIC modes was observed. The presence of heavy negative ions in the plasma has a significant effect on the excitation of the light ion EIC modes. The results may be relevant to the understanding of plasma wave properties in plasmas containing negative ions, such as those found in the Earth's ionosphere, the solar system, and, in particular, near Saturn's moon Titan, where an abundance of heavy negative ion species has recently been discovered [Coates, et al., 2007. Discovery of heavy negative ions in Titan's ionosphere. Geophys. Res. Lett. 34, L22103].  相似文献   

13.
Properties of propagation of large amplitude dust ion-acoustic solitary waves and double layers are investigated in electron-positron-ion plasma with highly charged negative dust. Sagdeev pseudopotential method has been used to derive the energy balance equation. The expression for the critical Mach number (lower/upper limit) for the existence of solitary structures has also been derived. The Sagdeev pseudopotential is a function of numbers of physical parameters such as ion temperature (σ), positron density (δ p ), dust density (δ d ) and electron to positron temperature ratio (β). These parameters significantly influence the properties of the solitary structures and double layers. Further it is found that both polarity (compressive and rarefactive) solitons and negative potential double layers are observed.  相似文献   

14.
We have studied the nonlinear propagation of dust ion-acoustic (DIA) waves in a dusty multi-ion dense plasma (with the constituents being degenerate, either non-relativistic or ultra-relativistic) and the propagation of such waves have been investigated by the reductive perturbation method. From the stationary solution of the Korteweg de-Vries (K-dV) equation and Burgers’ equation the nonlinear waves (specially, solitary and shock waves) have been found to be formed in the dusty plasma system under consideration. It has shown that the basic features of these waves are significantly modified by both the positive and negative ions and dust number densities, the degenerate of the constituents. The implications of our results have been briefly discussed.  相似文献   

15.
《Planetary and Space Science》2007,55(10):1358-1367
Propagation of plasma-acoustic wave has been studied in magnetized plasma contaminated with dust charged grains. It has shown that, because of the configuration of magnetized plasma contaminated with dust charge fluctuation, pseudopotential method fails to derive nonlinear wave equation. We thus exercise an alternate approach to yield wave equation in the form of Sagdeev-like potential equation which enables the success to study the nonlinear waves. Again a modified mathematical formalism known as tanh-method has the merit to evaluate the soliton features in relation to its expectation in space. The method has its success in finding the solitary waves along with other exciting formation of shock-like wave, soliton radiation in soliton propagation. The results have more realistic interpretation in showing explicitly the interaction of magnetic field and impurity caused by dust charge variation.  相似文献   

16.
The self-modulation of weakly relativistic plasma waves in equal mass (electron-positron) plasmas has been investigated by employing the Krylov-Bogoliubov-Mitropolsky perturbation technique. It is found that one-dimensional electron plasma waves are modulationally stable and that they can propagate in the form of dark envelope solitons.  相似文献   

17.
18.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

19.
The propagation of an ion-acoustic soliton in a collisionless plasma with adiabatic positive and negative ions (with equal ion temperature) and hot non-isothermal electrons is studied by use of the renormalization method introduced by Kodama and Taniuti in the reductive perturbation method. The basic set of fluid equations describing the system is reduced to a Korteweg-de Vries (K-dV)-type equation for the first-order perturbed potential and to a linear inhomogeneous differential equation to the second-order of the perturbed potential. A stationary solution of the coupled equations is obtained.  相似文献   

20.
In this paper, the characteristics of the dust acoustic solitary waves in dusty plasmas are studied. The distribution of ions is nonthermal, and the nonthermal parameter is treated as a variable. The pseudo-potential method has been used to investigate the possibility of soliton formation. We show that for some values of the nonthermal parameter there is no soliton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号