首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reserve (or field) growth, which is an appreciation of total ultimate reserves through time, is a well-recognized phenomenon, particularly in mature petroleum provinces. The importance of forecasting reserve growth accurately in a mature petroleum province made it necessary to develop improved growth functions, and a critical review of the original Arrington method was undertaken. During a five-year (1992–1996), the original Arrington method gave 1.03% higher than the actual oil reserve growth, whereas the proposed modified method gave a value within 0.3% of the actual growth, and therefore it was accepted for the development for reserve growth models.During a five-year (1992–1996), the USGS 1995 National Assessment gave 39.3% higher oil and 33.6% lower gas than the actual growths, whereas the new model based on Modified Arrington method gave 11.9% higher oil and 29.8% lower gas than the actual growths. The new models forecast predict reserve growths of 4.2 billion barrels of oil (2.7%) and 30.2 trillion cubic feet of gas (5.4%) for the conterminous U.S. for the next five years (1997–2001).  相似文献   

2.
The U.S. Geological Survey periodically makes appraisals of the oil and gas resources of the Nation. In its 1995 National Assessment the onshore areas and adjoining State waters of the Nation were assessed. As part of the 1995 National Assessment, 274 conventional oil plays and 239 conventional nonassociated-gas plays were assessed. The two datasets of estimates studied herein are the following: (1) the mean, undiscovered, technically recoverable oil resources estimated for each of the 274 conventional oil plays, and (2) the mean, undiscovered, technically recoverable gas resources estimated for each of the 239 conventional nonassociatedgas plays. It was found that the two populations of petroleum estimates are both distributed approximately as lognormal distributions. Fractal lognormal percentage theory is developed and applied to the two populations of petroleum estimates. In both cases the theoretical percentages of total resources using the lognormal distribution are extremely close to the empirical percentages from the oil and nonassociated-gas data. For example, 20% of the 274 oil plays account for 73.05% of the total oil resources of the plays if the lognormal distribution is used, or for 75.52% if the data is used; 20% of the 239 nonassociated-gas plays account for 76.32% of the total nonassociated-gas resources of the plays if the lognormal distribution is used, or for 78.87% if the data is used  相似文献   

3.
ARDS (version 4.01), a modified version of the Arps-Roberts discovery process model, was used to forecast the remaining oil and gas resources in more than 50 provinces, super-exploration plays, and individual plays in the onshore and offshore United States for the 1995 National Oil and Gas Assessment. The size distribution of oil and gas fields was estimated for the underlying distribution of fields; the size distribution for the remaining fields was calculated to be the difference between this distribution and that of discovered fields. The guidelines that govern the 1995 National Assessment require the underlying size distribution of fields to be estimated by using only data from two standard commercial data files (the NRG Associates field file and the Petroleum Information Inc. well file). However, a variety of situations required further modification of the discovery process modeling system; for example, multiple exploration plays that occurred nearly simultaneously and also displaced each other in time, and the phenomenon of field growth introduced a large bias in the forecasts produced by the discovery process models for some provinces.  相似文献   

4.
Bagirov  E.  Bagirov  B.  Lerche  I.  Mamedova  S. 《Natural Resources Research》1999,8(4):299-313
Original field data reports from the Azerbaijan sector of the South Caspian Basin have been used to compile statistical histograms of reservoir characteristics for both onshore and offshore oil fields. Two groups of statistics are presented here: the first group discusses reservoir thickness, areas, volumes, and horizon depths for the onshore and offshore fields; the second group discusses permeability, porosity, oil viscosity, oil recovery factor, reserves, and production for the onshore and offshore fields. These statistical distributions have been constructed so that one has available an historical database for use in assessing the range of likely reservoir characteristics in exploration ventures in this basin.  相似文献   

5.
The U.S. Geological Survey recently assessed undiscovered conventional gas and oil resources in eight regions of the world outside the U.S. The resources assessed were those estimated to have the potential to be added to reserves within the next thirty years. This study is a worldwide analysis of the estimated volumes and distribution of deep (>4.5 km or about 15,000 ft), undiscovered conventional natural gas resources based on this assessment. Two hundred forty-six assessment units in 128 priority geologic provinces, 96 countries, and two jointly held areas were assessed using a probabilistic Total Petroleum System approach. Priority geologic provinces were selected from a ranking of 937 provinces worldwide. The U.S. Geological Survey World Petroleum Assessment Team did not assess undiscovered petroleum resources in the U.S. For this report, mean estimated volumes of deep conventional undiscovered gas resources in the U.S. are taken from estimates of 101 deep plays (out of a total of 550 conventional plays in the U.S.) from the U.S. Geological Survey's 1995 National Assessment of Oil and Gas Resources. A probabilistic method was designed to subdivide gas resources into depth slices using a median-based triangular probability distribution as a model for drilling depth to estimate the percentages of estimated gas resources below various depths. For both the World Petroleum Assessment 2000 and the 1995 National Assessment of Oil and Gas Resources, minimum, median, and maximum depths were assigned to each assessment unit and play; these depths were used in our analysis. Two-hundred seventy-four deep assessment units and plays in 124 petroleum provinces were identified for the U.S. and the world. These assessment units and plays contain a mean undiscovered conventional gas resource of 844 trillion cubic ft (Tcf) occuring at depths below 4.5 km. The deep undiscovered conventional gas resource (844 Tcf) is about 17% of the total world gas resource (4,928 Tcf) based on the provinces assessed and includes a mean estimate of 259 Tcf of U.S. gas from the U.S. 1995 National Assessment. Of the eight regions, the Former Soviet Union (Region 1) contains the largest estimated volume of undiscovered deep gas with a mean resource of343 Tcf.  相似文献   

6.
From a geological perspective, deep natural gas resources generally are defined as occurring in reservoirs below 15,000 feet, whereas ultradeep gas occurs below 25,000 feet. From an operational point of view, deep may be thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas occurs in either conventionally trapped or unconventional (continuous-type) basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields.Exploration for deep conventional and continuous-type basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and state waters of the United States. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas also are high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet).Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin and accumulation of deep gas include the initial concentration of organic matter, the thermal stability of methane, the role of minerals, water, and nonhydrocarbon gases in natural gas generation, porosity loss with increasing depth and thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas.Technologic problems are among the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO2 and H2S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells (producing below 15,000 feet) is about 25%, a lack of geological and geophysical information continues to be a major barrier to deep gas exploration.Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries differ widely among different gas plays in different basins.Based on an analysis of natural gas assessments, deep gas holds significant promise for future exploration and development. Both basin-center and conventional gas plays could contain significant deep undiscovered technically recoverable gas resources.  相似文献   

7.
Although reserve (or field) growth has proved to be an important contributing factor in adding new reserves in mature petroleum basins, it is a poorly understood phenomenon. Although several papers have been published on the U.S. fields, there are only a few publications on fields in other petroleum provinces. This paper explores the reserve growth in the 42 largest West Siberian oil fields that contain about 55% of the basin's total oil reserves.The West Siberian oil fields show 13-fold reserve growth 20 years after the discovery year and only about 2-fold growth after the first production year. This difference in growth is attributed to extensive exploration and field delineation activities between discovery and the first production year. Because of the uncertainty in the length of evaluation time and in reported reserves during this initial period, reserve growth based on the first production year is more reliable for model development. However, reserve growth models based both on discovery year and first production year show rapid growth in the first few years and slower growth in the following years. In contrast, the reserve growth patterns for the conterminous United States and offshore Gulf of Mexico show a steady reserve increase throughout the productive lives of the fields. The different reserve booking requirements and the lack of capital investment for improved reservoir management and production technologies in West Siberia are the probable causes for the difference in the growth patterns.The models based on the first production year predict that the reserve growth potential in the 42 largest oil fields of West Siberia for a five-year period (1998–2003) ranges from 270–330 million barrels or 0.34–0.42% per year. For a similar five-year period (1996–2001), models for the conterminous United States predict a growth of 0.54–0.75% per year.  相似文献   

8.
本文研究了中国陆上天然气经济效用的地质及相关影响因素。主要研究结论如下:天然气勘探开发成本主要与气田(藏)的深度及储盖层的岩性参数相关,开采成本主要受自然地理因素以及相应储层物性参数影响,而气田(藏)丰度、有效厚度、孔隙度、渗透率和气藏类型是影响天然气产量的主要因素。基于上述研究结论,建立了针对投资成本、价格因素和气田经济价值的千米井深日产量计算公式和区域判断标准。根据判别标准,本文分析了中国不同区域且具有指标意义的天然气田(藏)的经济效用,并针对中国天然气产业经济发展提出了相应的结论和建议。  相似文献   

9.
This study employs (1) a simple econometric model to generate a time series of drilling footage to the year 2040 and (2) learning models to estimate the oil reserve additions from that drilling, given scenarios of oil price and projected U.S. population. Reserve additions are estimated separately for the lower 48 states and Alaska regions by estimating separate drilling footage and learning models for each region. Generally, the estimates of potential supply from undiscovered oil fields and from extensions of known fields are more optimistic than recent estimates by others. For a $1989 price of about $20/barrel (bbl), which is similar to recent prices, the potential supply of oil is estimated to be approximately 60.7 billion bbl, with 95-percent confidence bounds of 54.3 and 67.1 billion bbl. For a price of $25.50/bbl, potential supply is estimated to be approximately 82 billion bbl, with 95-percent confidence bounds of 74.5 and 89.5 billion bbl. Although estimates of potential oil supply for the entire United States are more optimistic than other recent estimates, the part of that supply estimated to be forthcoming from Alaska is smaller than other recent estimates: 2.3 and 3.3 billion bbl for prices of about $20 and $25.50 per barrel, respectively. Thus, reserve additions from the lower 48 states through development drilling and through improved recovery and production technologies will become increasingly important to future U.S. oil supply.  相似文献   

10.
The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world.  相似文献   

11.
Various methods for assessing undiscovered oil, natural gas, and natural gas liquid resources were compared in support of the USGS World Petroleum Assessment 2000. Discovery process, linear fractal, parabolic fractal, engineering estimates, PETRIMES, Delphi, and the USGS 2000 methods were compared. Three comparisons of these methods were made in: (1) the Neuquen Basin province, Argentina (different assessors, same input data); (2) provinces in North Africa, Oman, and Yemen (same assessors, different methods); and (3) the Arabian Peninsula, Arabian (Persian) Gulf, and North Sea (different assessors, different methods). A fourth comparison (same assessors, same assessment methods but different geologic models), between results from structural and stratigraphic assessment units in the North Sea used only the USGS 2000 method, and hence compared the type of assessment unit rather than the method. In comparing methods, differences arise from inherent differences in assumptions regarding: (1) the underlying distribution of the parent field population (all fields, discovered and undiscovered), (2) the population of fields being estimated; that is, the entire parent distribution or the undiscovered resource distribution, (3) inclusion or exclusion of large outlier fields; (4) inclusion or exclusion of field (reserve) growth, (5) deterministic or probabilistic models, (6) data requirements, and (7) scale and time frame of the assessment. Discovery process, Delphi subjective consensus, and the USGS 2000 method yield comparable results because similar procedures are employed. In mature areas such as the Neuquen Basin province in Argentina, the linear and parabolic fractal and engineering methods were conservative compared to the other five methods and relative to new reserve additions there since 1995. The PETRIMES method gave the most optimistic estimates in the Neuquen Basin. In less mature areas, the linear fractal method yielded larger estimates relative to other methods. A geologically based model, such as one using the total petroleum system approach, is preferred in that it combines the elements of petroleum source, reservoir, trap and seal with the tectono-stratigraphic history of basin evolution with petroleum resource potential. Care must be taken to demonstrate that homogeneous populations in terms of geology, geologic risk, exploration, and discovery processes are used in the assessment process. The USGS 2000 method (7th Approximation Model, EMC computational program) is robust; that is, it can be used in both mature and immature areas, and provides comparable results when using different geologic models (e.g. stratigraphic or structural) with differing amounts of subdivisions, assessment units, within the total petroleum system.  相似文献   

12.
中国海洋油气资源开发与国家石油安全战略对策   总被引:14,自引:3,他引:14  
石油是中国能源安全的核心问题,随着我国石油供应对外依赖程度的增大,石油安全问题越来越突出,将会成为我国21世纪经济、社会可持续发展面临的一个重要问题。我国是海洋油气资源丰富的国家,广阔的海域中分布着近100×104km2的含油沉积盆地,近海石油资源量为240×108t,天然气资源量为140×1012m3。海洋油气资源的开发利用,将能部分解决我国油气资源进口数量。本文讨论了解决石油安全的四种模式,对我国油气安全的国际和国内条件进行了分析,提出了解决我国油气安全的战略对策。  相似文献   

13.
海南省麒麟菜自然保护区由文昌和琼海两个省级麒麟菜自然保护区合并而成,面积17 517 hm~2。区域内资源丰富,有麒麟菜2种,面积19.40 km~2,平均覆盖度0.54%;造礁石珊瑚75种,分布面积约92.34km~2,平均覆盖率10.21%;海草8种,面积约46.16 km~2,平均覆盖度35.15%。目前保护区存在功能区划缺失、重点保护对象缺位、保护区域重叠、管理力度不足及区域内资源退化严重等问题。提出了调整保护区结构、开放实验区参观考察和旅游功能以及健全保护区管理等相关建议,以期为海南省海洋保护区的建设与发展提供参考。  相似文献   

14.
The giant oil fields of the world are only a small fraction of the total number of fields, but their importance is huge. Over 50% of the world’s oil production came from giants by 2005 and more than half of the world’s ultimate reserves are found in giants. Based on this, it is reasonable to assume that the future development of the giant oil fields will have a significant impact on the world oil supply. In order to better understand the giant fields and their future behavior, one must first understand their history. This study has used a comprehensive database on giant oil fields in order to determine their typical parameters, such as the average decline rate and life-times of giants. The evolution of giant oil field behavior has been investigated to better understand future behavior. One conclusion is that new technology and production methods have generally led to high depletion rates and rapid decline. The historical trend points towards high decline rates of fields currently on plateau production. The peak production generally occurs before half the ultimate reserves have been produced in giant oil fields. A strong correlation between depletion-at-peak and average decline rate is also found, verifying that high depletion rate leads to rapid decline. Our result also implies that depletion analysis can be used to rule out unrealistic production expectations from a known reserve, or to connect an estimated production level to a needed reserve base.  相似文献   

15.
This article reviews the theoretical foundations for the concept of peak minerals; drawing on similarities and differences with peak oil as modelled using Hubbert style curves. Whilst several studies have applied peak modelling to selected minerals, discussion of the appropriateness of using Hubbert style curves in the minerals context remains largely unexplored. Our discussion focuses on a comparison between oil and minerals, on the key variables: rates of discovery, estimates of ultimately recoverable resources and demand and production trends. With respect to minerals, there are several obstacles which complicate the application of Hubbert style curves to the prediction of future mineral production, including the lack of accurate discovery data, the effect of uncertain reserve estimates, and varying ore quality and quantity. Another notable difference is that while oil is often combusted during use, minerals are used to make metals which are inherently recyclable. Notwithstanding, by using a range of estimates of resources and/or reserves, a period of time can be identified which indicates when a peak in minerals production may occur. This information may then be used to plan for a transition from using a potentially constrained resource, to using substitutes if available, or to reducing demand for that mineral in society.  相似文献   

16.
Origin of the in situ stress field in south-eastern Australia   总被引:3,自引:0,他引:3  
The in situ stress field of south‐eastern Australia inferred from earthquake focal mechanisms and bore‐hole breakouts is unusual in that it is characterised by large obliquity between the maximum horizontal compressive stress orientation (SHmax) and the absolute plate motion azimuth. The evolution of the neotectonic strain field deduced from historical seismicity and both onshore and offshore faulting records is used to address the origin of this unusual stress field. Strain rates derived from estimates of the seismic moment release rate (up to ~10?16 s?1) are compatible with Quaternary fault–slip rates. The record of more or less continuous tectonic activity extends back to the terminal Miocene or early Pliocene (10–5 Ma). Terminal Miocene tectonic activity was characterised by regional‐scale tilting and local uplift and erosion, now best preserved by unconformities in offshore basins. Plate‐scale stress modelling suggests the in situ stress field reflects increased coupling of the Australian and Pacific Plate boundary in the late Miocene, associated with the formation of the Southern Alps in New Zealand.  相似文献   

17.
A geostochastic system called FASPF was developed by the U.S. Geological Survey for their 1989 assessment of undiscovered petroleum resources in the United States. FASPF is a fast appraisal system for petroleum play analysis using a field-size geological model and an analytic probabilistic methodology. The geological model is a particular type of probability model whereby the volumes of oil and gas accumulations are modeled as statistical distributions in the form of probability histograms, and the risk structure is bilevel (play and accumulation) in terms of conditional probability. The probabilistic methodology is an analytic method derived from probability theory rather than Monte Carlo simulation. The resource estimates of crude oil and natural gas are calculated and expressed in terms of probability distributions. The probabilistic methodology developed by the author is explained.The analytic system resulted in a probabilistic methodology for play analysis, subplay analysis, economic analysis, and aggregation analysis. Subplay analysis included the estimation of petroleum resources on non-Federal offshore areas. Economic analysis involved the truncation of the field size with a minimum economic cutoff value. Aggregation analysis was needed to aggregate individual play and subplay estimates of oil and gas, respectively, at the provincial, regional, and national levels.  相似文献   

18.
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses.
Emil D. AttanasiEmail:
  相似文献   

19.
世界石油探明储量分布特征与空间格局演化   总被引:2,自引:0,他引:2  
石油探明储量是一个动态变化的过程,文章对1980年以来不同区域尺度,包括全球、各大区以及国家层面的石油探明储量变化、分布特征等进行分析,得出结论:(1)世界石油探明储量自1980年以来大致经历了4个阶段,呈现明显的阶梯状增长的态势,基本每十年出现一次储量跃升,并保持一段时间的平稳。储采比一直稳定在40年以上,呈现缓慢上升的趋势。(2)大区尺度的石油探明储量分布不均衡,且探明储量的变化趋势不同。中东一直是石油探明储量最大的地区,其次为中南美洲地区。中东、北美占世界比重先升后降。非洲和中南美洲稳步提升,亚太地区持续下滑。(3)国家层面的石油探明储量呈现明显的集中分布。储量前4的国家占世界储量的53.75%,储量超过10亿吨的国家在很大程度上主导着世界石油开发的基本格局。从各国演变来看,世界石油储量呈现出多极化的趋势,从中东、北美向中亚、俄罗斯和中南美洲等转移。  相似文献   

20.
Oil exploration in Israel began in 1953. Until 1991 a total of 263 exploration wells and 122 development wells were drilled, 3 oil fields and 5 gas fields were discovered, and 4 noncommercial oil discoveries and 1 noncommercial gas discovery were made. Proven in-place reserves amount to 70 million barrels of oil equivalent (MMBOE). Exploration focused on six main plays: Syrian Arc anticlines; Mesozoic platform-edge, structural-stratigraphic traps; the Dead Sea graben; Early Mesozoic structures; Saqiye Group biogenic gas; and Hula Group biogenic gas. The more significant discoveries are associated with the first two plays. Ninety percent of the proven reserves were discovered by the first 71 wildcats, which constitute 27 percent of all wildcats drilled to date. During this phase of exploration, the average success was 7 percent, and the average discovery rate was 0.88 MMBOE per wildcat. Most of the following 192 wildcats were dry holes. If, as experts claim, significant reserves are still undiscovered, previous exploration must be deemed inefficient. The quantitative model of the discovery process also leads to such an assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号