首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ambient pressure elastic properties of single-crystal TiO2 rutile are reported from room temperature (RT) to 1800 K, extending by more than 1200 oK the maximum temperature for which rutile elasticity data are available. The magnitudes of the temperature derivatives decrease with increasing temperature for five of the six adiabatic elastic moduli (C ij ). At RT, we find (units, GPa): C 11=268(1); C 33=484(2); C 44=123.8(2); C 66=190.2(5); C 23=147(1); and C 12=175(1). The temperature derivatives (units, GPa K−1) at RT are: (∂C 11/∂T) P =−0.042(5); (∂C 33/∂T) P =−0.087(6); (∂C 44/∂T) P =−0.0187(2); (∂C 66/∂T) P =−0.067(2); (∂C 23/∂T) P =−0.025; and (∂C 12/∂T) P −0.048(5). The values for K S (adiabatic bulk modulus) and μ (isotropic shear modulus) and their temperature derivatives are K S =212(1) GPa; μ=113(1) GPa; (∂K S /∂T) P =−0.040(4) GPa K−1; and (∂μ/∂T) P =−0.018(1) GPa K−1. We calculate several dimensionless parameters over a large temperature range using our new data. The unusually high values for the Anderson-Gròneisen parameters at room temperature decrease with increasing temperature. At high T, however, these parameters are still well above those for most other oxides. We also find that for TiO2, anharmonicity, as evidenced by a non-zero value of [∂ln (K T )/∂lnV] T , is insignificant at high T, implying that for the TiO2 analogue of stishovite, thermal pressure is independent of volume (or pressure). Systematic relations indicate that ∂2 K S /∂TP is as high as 7×10−4 K−1 for rutile, whereas ∂2μ/∂TP is an order of magnitude less. Received: 19 September 1997 / Revised, accepted: 27 February 1998  相似文献   

2.
The high-pressure and temperature equation of state of majorite solid solution, Mj0.8Py0.2, was determined up to 23 GPa and 773 K with energy-dispersive synchrotron X-ray diffraction at high pressure and high temperature using the single- and double-stage configurations of the multianvil apparatuses, MAX80 and 90. The X-ray diffraction data of the majorite sample were analyzed using the WPPD (whole-powder-pattern decomposition) method to obtain the lattice parameters. A least-squares fitting using the third-order Birch-Murnaghan equation of state yields the isothermal bulk modulus, K T0  = 156 GPa, its pressure derivative, K′ = 4.4(±0.3), and temperature derivative (∂K T /∂T) P = −1.9(±0.3)× 10−2 GPa/K, assuming that the thermal expansion coefficient is similar to that of pyrope-almandine solid solution. Received: 5 October 1998 / Revised, accepted: 24 June 1999  相似文献   

3.
 P–V–T measurements on magnesite MgCO3 have been carried out at high pressure and high temperature up to 8.6 GPa and 1285 K, using a DIA-type, cubic-anvil apparatus (SAM-85) in conjunction with in situ synchrotron X-ray powder diffraction. Precise volumes are obtained by the use of data collected above 873 K on heating and in the entire cooling cycle to minimize non-hydrostatic stress. From these data, the equation-of-state parameters are derived from various approaches based on the Birch-Murnaghan equation of state and on the relevant thermodynamic relations. With K′0 fixed at 4, we obtain K0=103(1) GPa, α(K−1)=3.15(17)×10−5 +2.32(28)×10−8 T, (∂KT/∂T)P=−0.021(2) GPaK−1, (dα/∂P)T=−1.81×10−6 GPa−1K−1 and (∂KT/∂T)V= −0.007(1) GPaK−1; whereas the third-order Birch-Murnaghan equation of state with K′0 as an adjustable parameter yields the following values: K0=108(3) GPa, K′0=2.33(94), α(K−1)=3.08(16)×10−5+2.05(27) ×10−8 T, (∂KT/∂T)P=−0.017(1) GPaK−1, (dα/∂P)T= −1.41×10−6 GPa−1K−1 and (∂KT/∂T)V=−0.008(1) GPaK−1. Within the investigated P–T range, thermal pressure for magnesite increases linearly with temperature and is pressure (or volume) dependent. The present measurements of room-temperature bulk modulus, of its pressure derivative, and of the extrapolated zero-pressure volumes at high temperatures, are in agreement with previous single-crystal study and ultrasonic measurements, whereas (∂KT/∂T)P, (∂α/∂P)T and (∂KT/∂T)V are determined for the first time in this compound. Using this new equation of state, thermodynamic calculations for the reactions (1) magnesite=periclase+CO2 and (2) magnesite+enstatite=forsterite+CO2 are consistent with existing experimental phase equilibrium data. Received September 28, 1995/Revised, accepted May 22, 1996  相似文献   

4.
 Powder diffraction measurements at simultaneous high pressure and temperature on samples of 2M1 polytype of muscovite (Ms) and paragonite (Pg) were performed at the beamline ID30 of ESRF (Grenoble), using the Paris-Edinburgh cell. The bulk moduli of Ms, calculated from the least-squares fitting of VP data on each isotherm using a second-order Birch–Murnaghan EoS, were: 57.0(6), 55.1(7), 51.1(7) and 48.9(5) GPa on the isotherms at 298, 573, 723 and 873 K, respectively. The value of (∂K T /∂T) was −0.0146(2) GPa K−1. The thermal expansion coefficient α varied from 35.7(3) × 10−6 K−1 at P ambient to 20.1(3) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −3.9(1) × 10−6 GPa−1 K−1]. The corresponding values for Pg on the isotherms at 298, 723 and 823 K were: bulk moduli 59.9(5), 55.7(6) and 53.8(7) GPa, (∂K T /∂T) −0.0109(1) GPa K−1. The thermal expansion coefficient α varied from 44.1(2) × 10−6 K−1 at P ambient to 32.5(2) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −2.9(1) × 10−6 GPa−1 K−1]. Thermoelastic coefficients showed that Pg is stiffer than Ms; Ms softens more rapidly than Pg upon heating; thermal expansion is greater and its variation with pressure is smaller in Pg than in Ms. Received: 28 January 2002 / Accepted: 5 April 2002  相似文献   

5.
Values of the complete adiabatic elastic tensor for single-crystal chrome-diopside (a monoclinic pyroxene mineral) are presented from 298 to 1,300 K. The data were obtained using resonant ultrasound spectroscopy (RUS). They are the first published results for the temperature T dependences of the 13 individual elastic constants C ij of any clinopyroxene mineral. Each C ij is appropriately described by a linear function in T throughout the range of T. Values for each (∂C ij /∂T) P in GPa K−1 are as follows: C 11, −0.0291; C 22, −0.0248; C 33, −0.0179; C 44, −0.0103; C 55, −0.0077; C 66, −0.0152; C 12, −0.0119; C 13, −0.0064; C 23, 0.0000; C 15, 0.0025; C 25, 0.0022; C 35, −0.0046; and C 46, 0.0026. Values of (∂M/∂T) P in GPa K−1, where M represents an isotropic bulk property calculated from the C ij data, are as follows: adiabatic bulk modulus K S , −0.0123; isothermal bulk modulus K T , −0.0178; and shear modulus G, −0.00998. Some diopside derivatives, notably (∂K S /∂T) P , (∂K T /∂T) P , and (∂V P /∂T) P , where V P is the compressional wave velocity, have smaller magnitudes than all other minerals of importance in Earth’s mantle, thus, confirming predictions from systematics studies. We find several dimensionless quantities for this monoclinic mineral have normal values compared to other mantle minerals. Further, αK T (α is the volume coefficient of thermal expansion) for diopside is approximately independent of both T and volume V at elevated temperature, so its equation of state is accurately expressed in simplified form.  相似文献   

6.
Elastic wave velocities for dense (99.8% of theoretical density) isotropic polycrystalline specimens of synthetic pyrope (Mg3Al2Si3O12) were measured to 1,000 K at 300 MPa by the phase comparison method of ultrasonic interferometry in an internally heated gas-medium apparatus. The temperature derivatives of the elastic moduli [(∂Ks/∂T) P = −19.3(4); (∂G/∂T) P = −10.4(2) MPa K−1] measured in this study are consistent with previous acoustic measurements on both synthetic polycrystalline pyrope in a DIA-type cubic anvil apparatus (Gwanmesia et al. in Phys Earth Planet Inter 155:179–190, 2006) and on a natural single crystal by the rectangular parallelepiped resonance (RPR; Suzuki and Anderson in J Phys Earth 31:125–138, 1983) method but |(∂Ks/∂T) P | is significantly larger than from a Brillouin spectroscopy study of single-crystal pyrope (Sinogeikin and Bass in Phys Earth Planet Inter 203:549–555, 2002). Alternative approaches to the retrieval of mixed derivatives of the elastic moduli from joint analysis of data from this study and from the solid-medium data of Gwanmesia et al. in Phys Earth Planet Inter 155:179–190 (2006) yield ∂2 G/∂PT = [0.07(12), 0.20(14)] × 10−3 K−1 and ∂2 K S /∂PT = [−0.20(24), 0.22(26)] × 10−3 K−1, both of order 10−4 K−1 and not significantly different from zero. More robust inference of the mixed derivatives will require solid-medium acoustic measurements of precision significantly better than 1%.  相似文献   

7.
 The thermoelastic parameters of natural andradite and grossular have been investigated by high-pressure and -temperature synchrotron X-ray powder diffraction, at ESRF, on the ID30 beamline. The PVT data have been fitted by Birch-Murnaghan-like EOSs, using both the approximated and the general form. We have obtained for andradite K 0=158.0(±1.5) GPa, (dK/dT )0=−0.020(3) GPa K−1 and α0=31.6(2) 10−6 K−1, and for grossular K 0=168.2(±1.7) GPa, (dK/dT)0=−0.016(3) GPa K−1 and α0=27.8(2) 10−6 K−1. Comparisons between the present issues and thermoelastic properties of garnets earlier determined are carried out. Received: 7 July 2000 / Accepted: 20 October 2000  相似文献   

8.
A pressure-volume-temperature data set has been obtained for lawsonite [CaAl2Si2O7(OH)2.H2O], using synchrotron X-ray diffraction and an externally heated diamond anvil cell. Unit-cell volumes were measured to 9.4 GPa and 767 K by angle dispersive X-ray diffraction using imaging plates. Phase changes were not observed within this pressure-temperature range, and lawsonite compressed almost isotropically at constant temperature. The P-V-T data have been analyzed using a Birch- Murnaghan equation of state and a linear equation of state expressed as β=–1/V0 (∂V/∂P) T . At room temperature, the derived equation of state parameters are: K 0=124.1 (18) GPa K'0 set to 4) and β–1=142.0(24) GPa, respectively. Our results are intermediate between previously reported measurements. The high-temperature data show that the incompressibility of lawsonite decreases with increasing temperature to ∼500 K and then increases above. Hence, the second order temperature derivative of the bulk modulus is taken into account in the equation of state; a fit of the volume data yields K 0=123.9(18) GPa, (∂K/∂T)P=–0.111(3) GPa K–1, (∂2 K/∂T 2)P=0.28(6) 10–3 GPa K–2, α0=3.1(2) 10–5 K–1, assuming K'0=4. Received: 2 June 1998 / Revised, accepted: 12 Ocotber 1998  相似文献   

9.
The elastic moduli of magnesioferrite spinel, MgFe2O4, and their temperature dependence have been determined for the first time by ultrasonic measurements on a polycrystalline specimen. The measurements were carried out at 300 MPa and to 700°C in a gas-medium high-pressure apparatus. On heating, both the elastic bulk (K S) and shear (G) moduli decrease linearly to 350°C. By combining with extant thermal-expansion data, the values for the room-temperature K S and G, and their temperature derivatives are as follows: K 0 = 176.3(7) GPa, G 0 = 80.1(2) GPa, (∂K S/∂T) P = −0.032(3) GPa K−1 and (∂G/∂T) P = −0.012(1) GPa K−1. Between 350 and 400°C, there are abrupt increases of 1.4% in both of the elastic moduli; these closely coincide with the magnetic Curie transition that was observed by thermal analyses at about 360°C.  相似文献   

10.
 Calorimetric and PVT data for the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) have been obtained. The enthalpy of drop solution of three different samples was measured by high-temperature oxide melt calorimetry in two laboratories (UC Davis, California, and Ruhr University Bochum, Germany) using lead borate (2PbO·B2O3) at T=700 C as solvent. The resulting values were used to calculate the enthalpy of formation from different thermodynamic datasets; they range from −221.1 to −259.4 kJ mol−1 (formation from the oxides) respectively −13892.2 to −13927.9 kJ mol−1 (formation from the elements). The heat capacity of Mg5Al5Si6O21(OH)7 has been measured from T=50 C to T=500 C by differential scanning calorimetry in step-scanning mode. A Berman and Brown (1985)-type four-term equation represents the heat capacity over the entire temperature range to within the experimental uncertainty: C P (Mg-sursassite) =(1571.104 −10560.89×T −0.5−26217890.0 ×T −2+1798861000.0×T −3) J K−1 mol−1 (T in K). The P V T behaviour of Mg-sursassite has been determined under high pressures and high temperatures up to 8 GPa and 800 C using a MAX 80 cubic anvil high-pressure apparatus. The samples were mixed with Vaseline to ensure hydrostatic pressure-transmitting conditions, NaCl served as an internal standard for pressure calibration. By fitting a Birch-Murnaghan EOS to the data, the bulk modulus was determined as 116.0±1.3 GPa, (K =4), V T,0 =446.49 3 exp[∫(0.33±0.05) × 10−4 + (0.65±0.85)×10−8 T dT], (K T/T) P  = −0.011± 0.004 GPa K−1. The thermodynamic data obtained for Mg-sursassite are consistent with phase equilibrium data reported recently (Fockenberg 1998); the best agreement was obtained with Δf H 0 298 (Mg-sursassite) = −13901.33 kJ mol−1, and S 0 298 (Mg-sursassite) = 614.61 J K−1 mol−1. Received: 21 September 2000 / Accepted: 26 February 2001  相似文献   

11.
The unit cell parameters, extracted from Rietveld analysis of neutron powder diffraction data collected between 4.2 K and 320 K, have been used to calculate the temperature evolution of the thermal expansion tensor for gypsum for 50 ≤ T ≤ 320 K. At 300 K the magnitudes of the principal axes are α 11  = 1.2(6) × 10−6 K−1, α 22  = 36.82(1) × 10−6 K−1 and α 33  = 25.1(5) × 10−6 K−1. The maximum axis, α 22 , is parallel to b, and using Institution of Radio Engineers (IRE) convention for the tensor orthonormal basis, the axes α 11 and α 33 have directions equal to (−0.979, 0, 0.201) and (0.201, 0, 0.979) respectively. The orientation and temperature dependent behaviour of the thermal expansion tensor is related to the crystal structure in the I2/a setting. Received 12 February 1998 / Revised, accepted 19 October 1998  相似文献   

12.
 The lattice constants of paragonite-2M1, NaAl2(AlSi3)O10(OH)2, were determined to 800 °C by the single-crystal diffraction method. Mean thermal expansion coefficients, in the range 25–600 °C, were: αa = 1.51(8) × 10−5, αb = 1.94(6) × 10−5, αc = 2.15(7) ×  10−5 °C−1, and αV = 5.9(2) × 10−5 °C−1. At T higher than 600 °C, cell parameters showed a change in expansion rate due to a dehydroxylation process. The structural refinements of natural paragonite, carried out at 25, 210, 450 and 600 °C, before dehydroxylation, showed that the larger thermal expansion along the c parameter was mainly due to interlayer thickness dilatation. In the 25–600 °C range, Si,Al tetrahedra remained quite unchanged, whereas the other polyhedra expanded linearly with expansion rate proportional to their volume. The polyhedron around the interlayer cation Na became more regular with temperature. Tetrahedral rotation angle α changed from 16.2 to 12.9°. The structure of the new phase, nominally NaAl2 (AlSi3)O11, obtained as a consequence of dehydroxylation, had a cell volume 4.2% larger than that of paragonite. It was refined at room temperature and its expansion coefficients determined in the range 25–800 °C. The most significant structural difference from paragonite was the presence of Al in fivefold coordination, according to a distorted trigonal bipyramid. Results confirm the structural effects of the dehydration mechanism of micas and dioctahedral 2:1 layer silicates. By combining thermal expansion and compressibility data, the following approximate equation of state in the PTV space was obtained for paragonite: V/V 0 = 1 + 5.9(2) × 10−5 T(°C) − 0.00153(4) P(kbar). Received: 12 July 1999 / Revised, accepted: 7 December 1999  相似文献   

13.
The thermoelastic parameters of synthetic Ca3Al2Si3O12 grossular garnet were examined in situ at high-pressure and high-temperature by energy dispersive X-ray diffraction, using a Kawai-type multi-anvil press apparatus coupled with synchrotron radiation. Measurements have been conducted at pressures up to 20 GPa and temperatures up to 1,650 K: this P, T range covered the entire high-P, T stability field of grossular garnet. The analysis of room temperature data yielded V 0,300 = 1,664 ± 2 ?3 and K 0 = 166 ± 3 GPa for K0 K^{\prime}_{0} fixed to 4.0. Fitting of our PVT data by means of the high-temperature third order Birch–Murnaghan or the Mie–Grüneisen–Debye thermal equations of state, gives the thermoelastic parameters: (∂K 0,T /∂T) P  = −0.019 ± 0.001 GPa K−1 and α 0,T  = 2.62 ± 0.23 × 10−5 K−1, or γ 0 = 1.21 for fixed values q 0 = 1.0 and θ 0 = 823 (Isaak et al. Phys Chem Min19:106–120, 1992). From the comparison of fits from two different approaches, we propose to constrain the bulk modulus of grossular garnet and its pressure derivative to K T0 = 166 GPa and KT0 K^{\prime}_{T0}  = 4.03–4.35. Present results are compared with previously determined thermoelastic properties of grossular-rich garnets.  相似文献   

14.
In situ X-ray diffraction measurements of Fe- and Al-bearing MgSiO3-rich perovskite (FeAl-Pv), which was synthesized from a natural orthopyroxene, were performed at pressures of 19–32 GPa and temperatures of 300–1,500 K using a combination of a Kawai-type apparatus with eight sintered-diamond anvils and synchrotron radiation. Two runs were performed using a high-pressure cell with two sample chambers, and both MgSiO3 perovskite (Mg-Pv) and FeAl-Pv were synthesized simultaneously in the same cell. Thus we were able to measure specific volumes (V/V 0) of Mg-Pv and FeAl-Pv at the same P−T conditions. At all the measurement conditions, values of the specific volume of FeAl-Pv are consistent with those of Mg-Pv within 2 Standard Deviation, strongly suggesting that effect of incorporation of iron and aluminum on the thermoelastic properties of magnesium silicate perovskite is undetectable in this composition, pressure, and temperature range. Two additional runs were performed using a high-pressure cell that has one sample chamber and unit-cell volumes of FeAl-Pv were measured at pressures and temperatures up to 32 GPa and 1,500 K, respectively. All the unit-cell volume data of FeAl-Pv perovskite were fitted to the high temperature Birch–Murnaghan equation of state and a complete set of thermoelastic parameters of this perovskite was determined with an assumption of K′ 300,0 = 4. The determined parameters are K 300,0 = 243(3) GPa, (∂K T,0/∂T) P = −0.030(8) GPa/K, a 0 = 2.78(18) × 10−5 K−1, and b 0 = 0.88(28) × 10−8 K−2, where a 0 and b 0 are the coefficients of the following expression describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. The equation-of-state parameters of FeAl-Pv are in good agreement with those of MgSiO3 perovskite at the conditions corresponding to the uppermost part of the lower mantle.  相似文献   

15.
The thermoelastic behavior of a natural clintonite-1M [with composition: Ca1.01(Mg2.29Al0.59Fe0.12)Σ3.00(Si1.20Al2.80)Σ4.00O10(OH)2] has been investigated up to 10 GPa (at room temperature) and up to 960°C (at room pressure) by means of in situ synchrotron single-crystal and powder diffraction, respectively. No evidence of phase transition has been observed within the pressure and temperature range investigated. PV data fitted with an isothermal third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 457.1(2) ?3, K T0 = 76(3)GPa, and K′ = 10.6(15). The evolution of the “Eulerian finite strain” versus “normalized stress” shows a linear positive trend. The linear regression yields Fe(0) = 76(3) GPa as intercept value, and the slope of the regression line leads to a K′ value of 10.6(8). The evolution of the lattice parameters with pressure is significantly anisotropic [β(a) = 1/3K T0(a) = 0.0023(1) GPa−1; β(b) = 1/3K T0(b) = 0.0018(1) GPa−1; β(c) = 1/K T0(c) = 0.0072(3) GPa−1]. The β-angle increases in response to the applied P, with: βP = β0 + 0.033(4)P (P in GPa). The structure refinements of clintonite up to 10.1 GPa show that, under hydrostatic pressure, the structure rearranges by compressing mainly isotropically the inter-layer Ca-polyhedron. The bulk modulus of the Ca-polyhedron, described using a second-order BM-EoS, is K T0(Ca-polyhedron) = 41(2) GPa. The compression of the bond distances between calcium and the basal oxygens of the tetrahedral sheet leads, in turn, to an increase in the ditrigonal distortion of the tetrahedral ring, with ∂α/∂P ≈ 0.1°/GPa within the P-range investigated. The Mg-rich octahedra appear to compress in response to the applied pressure, whereas the tetrahedron appears to behave as a rigid unit. The evolution of axial and volume thermal expansion coefficient α with temperature was described by the polynomial α(T) = α0 + α1 T −1/2. The refined parameters for clintonite are as follows: α0 = 2.78(4) 10−5°C−1 and α1 = −4.4(6) 10−5°C1/2 for the unit-cell volume; α0(a) = 1.01(2) 10−5°C−1 and α1(a) = −1.8(3) 10−5°C1/2 for the a-axis; α0(b) = 1.07(1) 10−5°C−1 and α1(b) = −2.3(2) 10−5°C1/2 for the b-axis; and α0(c) = 0.64(2) 10−5°C−1 and α1(c) = −7.3(30) 10−6°C1/2for the c-axis. The β-angle appears to be almost constant within the given T-range. No structure collapsing in response to the T-induced dehydroxylation was found up to 960°C. The HP- and HT-data of this study show that in clintonite, the most and the less expandable directions do not correspond to the most and the less compressible directions, respectively. A comparison between the thermoelastic parameters of clintonite and those of true micas was carried out.  相似文献   

16.
The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.  相似文献   

17.
 Unit-cell dimensions of a natural phlogopite from Pargas, Finland, have been determined in the temperature interval of 27–1050 °C by X-ray powder diffraction technique. Expansion rates vary discontinuously with temperature with a break at 412 °C. Below this temperature, the linear expansions (α) for a, b and c axis lengths are 3.74 × 10−5 K−1, 1.09 × 10−5 K−1, and 1.19 × 10−5 K−1, respectively, and above that they are 0.86 × 10−5 K−1, 0.80 × 10−5 K−1, and 1.93 × 10−5 K−1. The volume thermal expansion coefficients are 6.26 × 10−5 K−1 and 3.71 × 10−5 K−1 for low-temperature and high-temperature intervals, respectively. The observed kink in the rate of thermal expansions with temperature could be due to the different mode of structural changes. Thermogravimetric analysis of the sample indicates the oxidation of iron in the temperature range of 500–600 °C and dehydroxylation as well as decomposition of phlogopite in the temperature range of 900–1200 °C. Received: 8 September 1998 / Accepted: 28 February 2000  相似文献   

18.
The heat capacity of synthetic, stoichiometric wadeite-type K2Si4O9 has been measured by DSC in the 195≤T(K)≤598 range. Near the upper temperature limit of our data, the heat capacity observed by DSC agrees with that reported by Geisinger et al. (1987) based on a vibrational model of their infrared and Raman spectroscopic data. However, with decreasing temperature, the Cp observed by DSC is progressively higher than that predicted from the vibrational model, suggesting that the standard entropy of K2Si4O9 is likely to be larger than 198.9 ± 4.0 J/K · mol computed from the spectroscopic data. A fit to the DSC data gave: Cp(T) = 499.13 (±1.87) − 4.35014 · 103(±3.489 · 101) · T −0.5, with T in K and average absolute percent deviation of 0.37%. The room-temperature compressibilities of kalsilite and leucite, hitherto unknown, have been measured as well. The data, fitted to the Murnaghan equation of state, gave K o = 58.6 GPa, K o  = 0.1 for kalsilite and K o = 45 GPa, K o  = 5.7 for α-leucite. Apart from the above mentioned data on the properties of the individual phases, we have also obtained reaction-reversals on four equilibria in the system K2O-Al2O3-SiO2. The Bayesian method has been used simultaneously to process the properties of 13 phases and 15 reactions between them to derive an internally consistent thermodynamic dataset for the K2O-Al2O3-SiO2 ternary. The enthalpy of formation of K2Si4O9 wadeite is in perfect agreement with its revised calorimetric value, the standard entropy is 232.1 ± 10.4 J/K · mol, ∼15% higher than that implied by vibrational modeling. The phase diagram, generated from our internally consistent thermodynamic dataset, shows that for all probable P-T trajectories in the subduction regime, the stable pressure-induced decomposition of K-feldspar will produce coesite + kalsilite rather than coesite + kyanite + K2Si4O9 (cf. Urakawa et al. 1994). Received: 11 June 1997 / Accepted: 2 December 1997  相似文献   

19.
Using powder X-ray diffraction of heated solids to pressures reaching 68 GPa, the pressure-volume-temperature (PVT) data on corundum Al2O3 and ɛ-Fe were determined with the following results: *Corundum,*Iron, *Al2O3*ɛ-Fe Isothermal bulk*258 (2)*164 (3)  modulus K'300, 1 (GPa) Pressure derivative K300, 1*4.88 (4)*5.36 (16) Temperature derivative*–0.020 (2)*–0.043 (3)  (∂K T,1 /∂T) P (GPa/K) Molar volume V300,1*25.59 (2)*6.76 (2)  (cm3/mol) Isobaric thermal expansion at 1 atm (0.101 MPa) is given by (K–1): α T =2.6 (2) 10–5+1.81 (9) 10–9 T–0.67 (6)/T 2 for corundum, and α T =5.7 (4) 10–5+4.2 (4) 10–9 T–0.17 (7)/T 2 for iron ɛ-Fe. Received: 1 March 1997 / Revised, accepted: 21 August 1997  相似文献   

20.
The temperature induced structural evolution and thermoelastic behaviour of a natural (Pbca) orthopyroxene (Opx), with chemical formula M2(Mg0.856Ca0.025Fe2+ 0.119) M1(Mg0.957Fe2+ 0.011Fe3+ 0.016Cr0.011Al0.005)Al0.032Si1.968O6, from a suite of high pressure ultramafic nodules of mantle origin, have been investigated by in-situ neutron powder diffraction at several temperatures starting from 1,200°C down to 150°C. Unit-cell parameter variations as a function of T show no phase transition within this temperature range. The volume thermal expansion coefficient, α = V −1(∂V/∂T) P0, varies linearly with T. The axial thermal expansion coefficients, αj = l j−1(∂l j/∂T)P0, increase non-linearly with T. The principal Lagrangian unit-strain coefficients (ɛ//a, ɛ//b, ɛ//c), increase continuously with T. However, the orientation of the unit-strain ellipsoid appears to change with T. With decreasing T, the values of the unit-strain coefficients along the b and c axes tend to converge. The orientation at ΔT = 1,080°C is maintained down to the lowest temperature (150°C). The two non-equivalent tetrahedral chains, TA n OA3n and TB n OB3n , are kinked differently. At room-T, the TB n OB3n chain is more strongly kinked by about 23° than the TA n OA3n chain. With increasing T, the difference decreases by 3° for the TB n OB3n chain. The intersite cation exchange reaction between M1 and M2 (Mg2+ and Fe2+) shows a slight residual order at 1,200°C followed by reordering with decreasing temperature although seemingly not with a definite progressive trend. At the lowest temperature reached (150°C), reordering has occurred with the same value of partitioning coefficient K D as that before heating. The absence of the expected phase transition is most likely due to the presence of minor amounts of Fe3+, Al, Ca and Cr which must play a crucial role on the thermoelastic behaviour and phase stability fields in natural Opx, with consequent important petrologic and geological implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号