首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南印度洋SST与南亚季风环流年代际变化的研究   总被引:2,自引:0,他引:2  
利用美国NCEP全球大气再分析资料和JONES全球海表面温度异常(SSTA)资料,分析了南印度洋SSTA和南亚季风环流年代际变化的特征。研究发现,无论是南印度洋副热带海水辐合区的SST还是赤道以北非洲西海岸附近上升运动海区的SST的长期变化趋势,除了准3-5年的变化以外,还存在着明显的年代际的变化。对于全球最显著南亚季风环流的分析表明,南亚季风环流也存在明显的年代际时间尺度的变化。与南太平洋SST的年代际变化相比,南印度洋SST的变化周期要相对短一些。通过分析南半球冷空气年代际活动的特征发现,冷空气与南印度洋SST年代际时间尺度的变化具有密切的联系。  相似文献   

2.
南印度洋偶极子及其影响研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
回顾了对南印度洋副热带海气相互作用的研究,总结了南印度洋偶极子事件背景下的气候变化。印度洋海表温度的方差表明南印度洋是整个印度洋海温变率最强的区域,年际海温变化最显著的特征就是海温呈现西南—东北向的偶极子型分布,被称为南印度洋偶极子(Southern Indian Ocean Dipole, SIOD)。南印度洋海温偶极子的形成主要是受大尺度大气环流调整的影响。南印度洋副热带反气旋环流异常引起了印度洋热带东风异常和副热带西风异常的变化,影响了潜热通量、上升流和Ekman热输送,进而引起了海温变化。SIOD对热带和热带外大气环流也有影响,尤其会影响亚洲夏季风降水异常,例如我国的降水异常和南印度洋偶极子海温异常具有显著相关关系。此外,SIOD模态所引起的经向环流异常与南海、菲律宾地区的反气旋环流异常也有紧密联系。  相似文献   

3.
基于变分理论算法实现了METOP-A卫星AVHRR传感器探测数据的海洋表面温度变分反演,进行了连续1个月的海表温度反演试验,并分别从全球、分纬度带和天气系统活跃区域3个方面,将变分反演结果(VAR SST)与利用统计回归方法反演相同卫星得到的海表温度产品(GBL SST)、其他海温融合产品(OISST)及实际浮标观测数据等进行一系列评估。从全球评估指标看出,以OISST为参照,VAR SST要优于GBL SST;以浮标观测为参照,VAR SST略逊于GBL SST,而且VAR SST还改进了GBL SST随时间波动大的缺点;从分纬度带对比看出,在与OISST对比时,VAR SST在低纬度地区和北半球中纬度地区的质量要优于GBL SST,海温反演精度较高。研究还表明,由于变分方法考虑了大气状态的变化,能够更加有效订正卫星遥感过程中大气的削弱作用,从而反演出精度更高的海表温度,尤其在天气系统较为复杂的区域效果明显。  相似文献   

4.
A coupled air–sea general circulation model is used to simulate the global circulation. Different parameterizations of lateral mixing in the ocean by eddies, horizontal, isopycnal, and isopycnal plus eddy advective flux, are compared from the perspective of water mass transformation in the Southern Ocean. The different mixing physics imply different buoyancy equilibria in the surface mixed layer, different transformations, and therefore a variety of meridional overturning streamfunctions. The coupled‐model approach avoids strong artificial water mass transformation associated with relaxation to prescribed mixed layer conditions. Instead, transformation results from the more physical non‐local, nonlinear interdependence of sea‐surface temperature, air–sea fluxes, and circulation in the model's atmosphere and ocean. The development of a stronger mid‐depth circulation cell and associated upwelling when eddy fluxes are present, is examined. The strength of overturning is diagnosed in density coordinates using the transformation framework.  相似文献   

5.
南海表层水温年际变化的大尺度特征   总被引:24,自引:2,他引:22  
通过对COADS海洋气象资料的分析,得出南海表层水温(SST)年际变化的若干大尺度特征.结果表明:南海SST年际具有一定的准周期性,其显著周期为24~30个月;南海SST年际变化与年循环之间有着一种锁相关系,关键位相在于北半球冬春季节;南海典型冷暖年份合成SST距平场的时空结构十分相似;在年际时间尺度上,南海SST和南方涛动指数有反相关系,与经向风海面热收支之间有同位相关系;南海暖池面积指数的年际变化与南海SST年际变化一致.  相似文献   

6.
Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the net heat gain of the sea surface are calculated over the Indian and the Pacific Oceans for the domain of 35°N-35°S and 45°E-75°W. The results indicate that the upward transfer of the latent and the sensible heat fluxes over the winter hemisphere is larger than that over the summer hemisphere. The sensible heat over the tropical mid Pacific in the Southern Hemisphere is transported from the atmosphere to the ocean, though its magnitude is rather small. The latent heat flux gained by the air over the eastern Pacific is less than the mean value of the normal year. The net radiation, on which the cloud amount has considerable impact, is essentially zonally distributed. Moreover, the sea surface temperature (SST) has a very good correlation with the net radiation, the region of warm SST coinci  相似文献   

7.
Based on the data on the sea-surface temperature (SST), the heat content of the upper 200-m layer, and the sea-level pressure, we analyze the low-frequency variability of the SST and heat content in the North Atlantic in 1950–1992 and the index of North-Atlantic Oscillation (NAO) in 1940–1995. It is confirmed that the role of the ocean and various mechanisms controlling the variability of SST changes for processes corresponding to different time scales (interannual, decadal, and interdecadal). It is shown that the interaction of tropical and subtropical latitudes is of principal importance on the interannual scale, the processes regulating the variability of subtropical gyre are important on the decadal scale, and the variations of the NAO with lower frequencies are controlled by the oceanic variability at high latitudes. We discuss possible feedbacks in the ocean–atmosphere system maintaining the NAO.  相似文献   

8.
2000-2008年期间南海海面温度的年际与空间变异   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对2000-2008年更高空间分辨率的南海海面温度(SST)的卫星遥感数据进行经验正交函数(EOF)分析,着重研究21世纪以来整个南海海域SST年际变化的时空变异,并探讨了其与南海海面风场和海面高度的关系,以及期间南海发生的两次负异常事件的特点和成因.SST年际变化的第一模态表现为全海盆同相变化,年际振荡主要发生在...  相似文献   

9.
The change of sea surface temperature(SST) in the southern Indian Ocean(SIO) during the recent six decades has been analyzed based on oceanic reanalysis and model, as well as atmospheric data. The results show that a thermal regime shift in SIO during the 1960 s, which is not caught enough attentions, has been of equal magnitude to the linear warming since 1970. Empirical Orthogonal Function(EOF) analyses reveal that a thermal shift is combined with atmospheric changes such as the weakening of westerly during the period of 1960–1967. Inner dynamic connections can be defined that when the westerly winds turn weak, the anticyclonic wind circulation between westerly winds and the trade winds decreases, which further reduces the SST to a negative peak in this period. It is noted that the shifts in the 1960 s are also evident for Southern Hemisphere. For example, subtropical high and the entire westerly winds belt at high latitudes both change dramatically in the 1960 s. This large-scaled process maybe link to the change of southern annular mode(SAM).  相似文献   

10.
利用HOAPS资料研究南海海气界面热通量时空分布   总被引:9,自引:3,他引:6  
基于第二版本HOAPS(Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data)潜热、感热和海表温度(SST)3个参量的15 a(1988~2002年)逐月平均资料,利用经验正交方法分解分析了这3个参量在南海的时空分布.结果表明,在夏季模态,潜热表现为南高北低,感热表现为中间低两边高,两者主要都是海洋向大气输送热量,但大气有时也向南海中部输送感热;在冬季模态,潜热和感热的高值区都在南海北部,东北部有一强中心,该中心主要是由风场引起的;夏季SST的变化导致全年SST呈准半年周期变化.冬季SST的变化滞后于潜热变化1个月;除夏季和冬季模态外,冬夏转换季节模态也十分明显;HOAPS与NCEP(National Center of Environment Prediction)资料相比,两者3个参量的时空分布大体一致,区别在于HOAPS资料能更好地反映参量的一些细微特征.  相似文献   

11.
The effects of biological heating on the upper-ocean temperature of the global ocean are investigated using two ocean-only experiments forced by prescribed atmospheric fields during 1990–2007, on with fixed constant chlorophyll concentration, and the other with seasonally varying chlorophyll concentration. Although the existence of high chlorophyll concentrations can trap solar radiation in the upper layer and warm the surface, cooling sea surface temperature (SST) can be seen in some regions and seasons. Seventeen regions are selected and classified according to their dynamic processes, and the cooling mechanisms are investigated through heat budget analysis. The chlorophyll-induced SST variation is dependent on the variation in chlorophyll concentration and net surface heat flux and on such dynamic ocean processes as mixing, upwelling and advection. The mixed layer depth is also an important factor determining the effect. The chlorophyll-induced SST warming appears in most regions during the local spring to autumn when the mixed layer is shallow, e.g., low latitudes without upwelling and the mid-latitudes. Chlorophyll-induced SST cooling appears in regions experiencing strong upwelling, e.g., the western Arabian Sea, west coast of North Africa, South Africa and South America, the eastern tropical Pacific Ocean and the Atlantic Ocean, and strong mixing (with deep mixed layer depth), e.g., the mid-latitudes in winter.  相似文献   

12.
A simulation is conducted with a realistic ocean general circulation model to investigate the three dimensional spreading of a passive tracer prescribed at the sea surface with the same distribution as the interdecadal sea surface temperature (SST) anomalies observed in the North Pacific. The tracers reaching the equator have the same sign as the major oval-shaped SST anomaly pattern in the central North Pacific but with a magnitude reduced less than 10% of the mid-latitude SST anomaly. The mixing both with the water containing SST anomalies of an opposite sign off the west coast of North America, and with the Southern Hemisphere thermocline water both contribute to the reduced equatorial amplitude. On the way to the equator in the southwestern part of the subtropical gyre, the subducted water is replenished by tracers leaking from the recirculation region to the north. The simulated passive tracer field in the subsurface layers agrees with the observed interdecadal temperature anomalies, suggesting the relevance of the processes studied here to the thermocline variability in the real North Pacific.  相似文献   

13.
The Pacific Decadal Oscillation   总被引:60,自引:1,他引:60  
The Pacific Decadal Oscillation (PDO) has been described by some as a long-lived El Niño-like pattern of Pacific climate variability, and by others as a blend of two sometimes independent modes having distinct spatial and temporal characteristics of North Pacific sea surface temperature (SST) variability. A growing body of evidence highlights a strong tendency for PDO impacts in the Southern Hemisphere, with important surface climate anomalies over the mid-latitude South Pacific Ocean, Australia and South America. Several independent studies find evidence for just two full PDO cycles in the past century: “cool” PDO regimes prevailed from 1890–1924 and again from 1947–1976, while “warm” PDO regimes dominated from 1925–1946 and from 1977 through (at least) the mid-1990's. Interdecadal changes in Pacific climate have widespread impacts on natural systems, including water resources in the Americas and many marine fisheries in the North Pacific. Tree-ring and Pacific coral based climate reconstructions suggest that PDO variations—at a range of varying time scales—can be traced back to at least 1600, although there are important differences between different proxy reconstructions. While 20th Century PDO fluctuations were most energetic in two general periodicities—one from 15-to-25 years, and the other from 50-to-70 years—the mechanisms causing PDO variability remain unclear. To date, there is little in the way of observational evidence to support a mid-latitude coupled air-sea interaction for PDO, though there are several well-understood mechanisms that promote multi-year persistence in North Pacific upper ocean temperature anomalies.  相似文献   

14.
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.  相似文献   

15.
基于1986-2008年的中国近海及邻近海域再分析产品(CORA),采用经验正交函数分解方法(EOF)分析了海表面温度(SST)的季节及年际变化特征,并用相应的SODA、AVHRR以及Levitus资料对CORA做了对比评估。相比于AVHRR而言,CORA资料SST的偏差和均方根误差均小于SODA,相比Levitus资料而言CORA资料温度盐度的均方根误差随深度的变化皆小于SODA。 CORA与SODA资料相比,两者前3个模态的时空分布大体一致,区别在于CORA资料能更好地反映参量的一些细微特征。结果表明,CORA资料能很好的刻画中国近海SST的季节、年际变化特征,尤其是黑潮流经区域SST的局地变化特征。季节EOF第二模态显示的是SST对由风引起的潜热释放的响应特征。第三模态刻画了冬夏转换季的分布特征,主要揭示了东北-西南走向的锋面特征。SST年际变化与ENSO密切相关,区域平均的南海SSTA与Nino指数的吻合程度CORA优于SODA。  相似文献   

16.
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is interdecadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.  相似文献   

17.
The existence and spatial distribution of possible teleconnections between the South Pacific and North Atlantic oceans and the Ligurian Sea (North-western Mediterranean) are investigated in the present paper. Teleconnections are searched by cross-correlating monthly spatio-temporal time series of 1.1 km resolution sea surface temperature (SST), and a 22.2 km resolution sea level anomaly (SLA), measured from satellite from March 1993 to August 1999, with two indices characterising the South Pacific and the North Atlantic variability: the Southern Oscillation (SO) and the North Atlantic Oscillation (NAO) indices, respectively. Concerning the variability induced by the North Atlantic Ocean, it is shown that it mostly influences the SLA field in the Ligurian Sea. Specifically, relevant anti-correlations between SLA and North Atlantic variability have been found in all the Ligurian sub-basin. As expected by geographical proximity, the effects of North Atlantic on the SLA field in the Ligurian Sea are instantaneous at monthly time scales. Instead, correlations between SST and NAO Index are found at time lag τ = 1 month in the southern part of the basin highlighting the memory of the ocean related to their heat capacity. Significant anti-correlations between SO Index and the SST field in the Ligurian Sea, were obtained at time lag τ = 4 months in the coastal areas of the sub-basin. Results also indicate that the impact of teleconnections in the area studied is not geographically uniform.  相似文献   

18.
The response of the eastern tropical Indian Ocean(ETIO) to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model(CESM). A significant positive asymmetry in sea surface temperature(SST) is found over the ETIO—the warming responses to the positive forcing exceeds the cooling to the negative forcing. A mixed layer heat budget analysis is carried out to identify the mechanisms responsible for the SST asymmetry. Results show that it is mainly ascribed to the ocean dynamical processes, including vertical advections and diffusion. The net surface heat flux, on the contrary, works to reduce the asymmetry through its shortwave radiation and latent heat flux components. The former is due to the nonlinear relationship between SST and cloud, while the latter is resulted mainly from Newtonian damping and air-sea stability effects. Changes in the SST skewness are also evaluated, with more enhanced negative SST skewness over the ETIO found for the cooling than heating scenarios due to the asymmetric thermocline-SST feedback.  相似文献   

19.
An idealised two-basin model is used to investigate the impact of the wind field on the heat exchange between the ocean basins. The scalar potential of the divergent component of the horizontal heat flux is computed, which gives a 'coarse-grained' image of the surface heat flux that captures the large-scale structure of the horizontal heat transport. Further the non-divergent component is examined, as well as the meridional heat transport and the temperature–latitude overturning stream function. A sensitivity analysis examines the heat transport response to changes in wind stress at different latitudes. The results are compared with results from an eddy-permitting global circulation model. The westerly wind stress over the Southern Ocean has two effects: a local reduction of the surface heat loss in response to the equatorward surface Ekman drift, and a global re-routing of the heat export from the Indo-Pacific. Without wind forcing, the Indo-Pacific heat export is released to the atmosphere in the Southern Ocean, and the net heat transport in the southern Atlantic is southward. With wind forcing, the Indo-Pacific export enters the Atlantic through the Aghulas and is released in the Northern Hemisphere. The easterlies enhance the poleward heat transport in both basins.  相似文献   

20.
《Ocean Modelling》2008,20(2):157-169
The dynamical link between mean state biases and dominant timescales of interannual variability is examined using the output from two state-of-the-art coupled model simulations, results from an ocean-only simulation forced with observed surface fields, and various observational data sets. The focus of this study is the relative role of the mean upper ocean density structure vs. anomalous wind forcing in controlling the spectral characteristics of tropical Pacific interannual variability. It is shown that an extensive South Pacific Convergence Zone (SPCZ) creates a potential vorticity (PV) barrier in the Southern Hemisphere similar to the one associated with the Intertropical Convergence Zone (ITCZ) in the Northern Hemisphere in both climate models. The PV barrier in the Southern Hemisphere strongly constrains the mean equatorward flow in the ocean model pycnocline, creating a “choke point” for the mean flow around 10°S. It is then examined whether the PV barrier can also limit the anomalous flow associated with mass recharge/discharge to/from the equatorial thermocline at interannual timescales. If the anomalous flow were impeded by the mean PV structure the meridional extent of the area involved in the mass recharge/discharge process would be narrower, leading to a shorter adjustment (and ENSO) timescale. Comparison of the two climate models, both of which have similarly erroneous PV structures in the southern tropical Pacific, but different interannual timescales, shows that the meridional extent of the anomalous meridional transport is primarily controlled by the latitudinal location of the wind stress curl anomalies, while the mean state bias in the Southern Hemisphere does not seem to have any significant influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号