首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用双差定位法对京西北地区(39.5°—41.5° N,113°—117° E)2013年1月1日至2017年12月31日6 223次有效地震进行精确定位,得到该区震源分布的精细图像和震源深度剖面图。结果显示,重新定位后地震的水平分布更集中,沿断裂带分布特征更加明显,震中在断裂带呈更明显的条带状、簇状分布,地震与线状的深浅断裂构造的关系密切;大部分地震发生在中上地壳,震源分布为典型震源密集区的空间形态,呈纵深约15 km、直径20—40 km的近圆形“厚饼状”。  相似文献   

2.
利用Hypocenter和Hypo2000地震定位法对2008年8月30日至2008 年11月30日四川攀枝花-会理发生的地震序列进行精确定位,就两种定位法的震中分布、深度剖面、地震震中平面距离差、震源深度做了对比分析.结果表明:Hypocenter地震定位法与Hypo2000地震定位法定位结果比较吻合,定位效果较好.从Hypo2000方法给出的定位结果可以看出震中集中和收敛更清晰地勾画出了地震断层的空间走向.地震序列震中呈近南北方向分布, 总长度约37 km..地震序列主要集中在元谋断裂带,震源深度的优势分布在5~15 km之间, 平均震源深度为9.7 km.  相似文献   

3.
采用双差地震定位算法对2009年青海大柴旦6.4级地震和3个及以上台站记录到的余震进行了重新定位,获得了873次地震的重新定位结果。主震的震中位置为37.56°N,95.90°E,震源深度6.5 km,发震在大柴旦宗务隆山断裂带。精确定位结果与原始数据进行比较,定位残差明显减小,定位后的地震分布更加集中,主要分布在大柴旦宗务隆山断裂带周围,震源深度优势分布在2~11 km,与主震震中位置和震源深度相符。  相似文献   

4.
使用双差定位法对2018年2月12日永清MW 4.3地震及其余震序列进行重新定位,共得到38个重新定位结果.结果显示:①余震序列分布更加集中,地震序列震中呈NE向分布,与河西务断裂带走向基本一致;②地震序列的震源深度主要为20—25 km,北东侧震源较浅,南西侧震源较深,主震位于地震剖面下部,此次地震引起的破裂可能为由深部到浅部.  相似文献   

5.
使用双差定位法对2018年2月12日永清MW 4.3地震及其余震序列进行重新定位,共得到38个重新定位结果。结果显示:①余震序列分布更加集中,地震序列震中呈NE向分布,与河西务断裂带走向基本一致;②地震序列的震源深度主要为20—25 km,北东侧震源较浅,南西侧震源较深,主震位于地震剖面下部,此次地震引起的破裂可能为由深部到浅部。  相似文献   

6.
2019年黄海ML4.6地震序列发生在NW向苏北—滨海断裂带附近,历史上该断裂带附近曾多次发生破坏性地震。为了判断此次地震序列的发生是否与苏北—滨海断裂带活动有关,本文基于黄海ML4.6地震震中附近400 km范围内的测震台站记录,采用CAP方法计算了此次黄海地震序列中ML4.6和ML4.1地震的深度和震源机制解参数,并使用双差定位方法对该地震序列进行了重新定位。研究结果显示:2019年12月8日黄海ML4.6和12日黄海ML4.1地震的震源深度分别为20 km和21 km,位于发震区域的脆韧转换带内;黄海ML4.6地震震源机制解节面Ⅰ的走向、倾角、滑动角分别为123°,74°和61°,节面Ⅱ的走向、倾角、滑动角分别为6°,33°和149°;黄海ML4.1地震震源机制解节面Ⅰ的走向、倾角、滑动角分别为135°,77°和32°,节面Ⅱ的走向、倾角、滑动角分别为37°,59°和165°。两次地震的震源机制解节面参数与苏北—滨海断裂带的几何参数并不一致,表明此次黄海地震序列的发生与苏北—滨海断裂带的主断裂活动没有直接关系。黄海地震序列震中的重新定位结果显示该地震序列呈NW向分布。由上述反演所获的两次黄海地震的震源机制和地震序列的重新定位结果推测,黄海ML4.6和ML4.1地震的破裂方向可能为NW向,黄海ML4.6地震序列可能是发生在区域壳内脆韧转换带的左旋走滑地震事件。   相似文献   

7.
海南岛及邻区地震精确定位及断裂构造分析   总被引:1,自引:0,他引:1  
利用双差地震定位法对2000~2012年海南岛及邻区ML≥1.0的1 035次地震进行重新定位,得到了820次地震的重定位结果。结果显示:重新定位后的结果大大改善了原地震定位的精度,且部分震群更加集中密集,并向断裂带趋近;震源深度分布更为合理,精定位前震源深度绝大多数位于10 km处,而精定位后发散分布于地下20 km内,近似呈正态分布形态,优势分布深度为5~15 km;重定位后的地震呈现垂直条带分布特征,体现了断裂带的运动构造,更加符合断裂带的地震活动特点。  相似文献   

8.
选取河南范县及邻区2008年1月~2015年9月M_L≥2.0地震78个,用双差定位法进行重新定位。结果显示,重定位的震中主要沿聊城-兰考断裂带呈NE向分布,较此前更集中。重定位后的震源深度82%位于7~8km,也比此前更集中。在此基础上,用CAP方法研究了该地区2008年以来M_L≥3.0地震的震源机制解。结果显示,节面Ⅰ的14个地震中有11个地震震中分布呈NE向,这与用双差法重新定位后的震中分布方向一致。此外,这14个地震中有9个地震的P轴方位在50°~100°,均值为75°,这与华北地区主压应力方向基本一致。综合分析认为,该区域的地震活动与聊城-兰考断裂有关。  相似文献   

9.
采用双差地震定位方法对安徽省霍山地区2009年1月1日至2014年6月13日发生的2 679个M_L≥0.0地震进行重新定位研究。对同一地震事件定位前后位置进行比较,得到各个地震在EW、N-S及U-D三个方向的偏差平均值分别为0.05km、0.06km及0.07km。重新定位后,原震源位置的定位精度大大提高,由定位误差所引起的原震源位置呈现的"网格状"假象分布现象得到明显改善,震中在空间上分布更加紧凑,丛集性明显,且呈现出3条NE向分布的地震密集带,与落儿岭—土地岭断裂方向大致一致。同时震源深度的分布更加精确,且在4~9km处存在明显的优势分布现象,占总数的88%以上。霍山地区浅源地震发育,表明该地区地壳中上部地震波速度较高。  相似文献   

10.
利用双差定位法对江苏地区2009-2015年地震记录进行重新定位。结果显示,重新定位后的结果比原有定位精度有了较好的改进,地震序列在空间分布上更加集中;从平面分布上看,重新定位后的地震更加集中于断裂带附近,较多地震呈丛集状出现;从震源深度分布看,研究区内重新定位后地震震源深度有明显收敛,大多集中在5~20km,表明研究区孕震层基本位于地壳的中上部。同时通过对江苏省不同时期发生的几个震群地震构造活动进行分析(分析各个地震序列的走向、是否产生新的断裂带、与原有断裂带走向是否一致等问题),认为其具有十分重要的意义。  相似文献   

11.
京西北地区地震重定位分析   总被引:1,自引:1,他引:0  
利用双差地震定位方法,针对京西北地区(39.5°—41.5°N,113.5°—116.5°E)2008—2016年记录的地震进行重新定位,最终得到1819次地震精定位结果。分析表明:地震密集区域多集中分布在NE和NW向断裂交汇区域,成条带的地震走向更加清晰,成簇性地震分布更加收敛,体现了断裂对震中分布具有较强的控制作用;震源深度优势分布主要集中在4—14 km范围,表明京西北地区地震主要发生在的中上地壳;震源深度剖面显示,在不同的地震密集区,孕震深度有一定差别,揭示了断裂的深部展布特征,反映了一些地区深部发震构造的复杂性。  相似文献   

12.
2016年12月—2018年4月间布设于汶川、芦山地震之间地震空段的密集监测台阵(LmsSGA)提供了密集的观测数据.通过拾取地震走时、初始定位,计算地方震级,得到了完备性震级为0级的地震目录.更加完备的地震目录为地震空段及周围地震活动的时空分布特征和孕震风险性评估提供了丰富的信息.重定位结果显示地震主要集中于龙门山断裂带深度为5~20 km的孕震层内.地震活动频繁的汶川、芦山主震区,震源的空间分布模式与其早期余震相似,说明两次大地震的区域仍处于缓慢的应力调整阶段.青藏高原物质东向挤出受宝兴、彭灌杂岩阻挡,在两个杂岩体西北侧地震活动频繁.地震活动性分布显示汶川—茂县、映秀—北川断裂上存在一个清晰的长约30 km,宽约20 km的地震活动"空白"区域,与其下方因部分熔融而产生的低速体分布一致,我们推测熔融体的加温作用是导致空段内极低的地震活动性的主要原因.监测时段内仍观测到降雨变化率和地震数量呈反相关关系,再次证实了汶川—芦山地震间地震空段及邻区内季节性降雨对地震活动性存在一定调节作用.综合分析S波速度模型、历史强震活动及b值,我们推断地震空段东部的彭灌断裂中段及周围部分隐伏断层存在发生强震的风险.  相似文献   

13.
采用震源位置及速度结果的联合反演方法确定闽粤赣交界区(24°~26.5°N,114°~117.8°E)地震的震源位置以及震源区速度结构。结果显示:1闽粤赣交界区地震震源平均深度随震级增大而加深的特征明显,即地震震级越大,震源深度越深,但平均深度不超过15 km;越靠近沿海,地震震源深度有加深的趋势。2通过对河源地区、邵武-河源断裂带中段(寻乌-瑞金)区域、政和-大浦断裂带中段(漳平附近)区域以及闽粤近海区域地震剖面研究,发现地震多发生于高低速异常结合部位。  相似文献   

14.
Small earthquakes have been recorded in Yibin area, Sichuan Province since 1970, the frequency and intensity of seismicity have shown an increasing trend in recent ten years, and the earthquakes are distributed mainly in Changning, Gongxian and Junlian areas. Based on the seismic data from January 2008 to May 2015 recorded by Sichuan and Yunnan regional networks and Yibin local network, seismicity analysis, precise location and velocity structure inversion for earthquakes in Yibin area are carried out, the three-dimensional spatial distribution of seismic activity and the velocity structure at different depths in this region are investigated, trying to analyze the seismic activity law and seismogenic mechanism in Yibin area. The earthquake relocation result shows that the spatial cluster distribution of earthquakes is more obvious in Yinbin area, the earthquakes are concentrated in Changning-Gongxian and Gongxian-Junlian regions. The seismic activity presents two dominant directions of NW and NE in Changning-Gongxian region, and shows asymmetric conjugate distribution, the long axes of NW-trending and NE-trending seismic concentration area are about 30km and 12km respectively, and the short axes are about 5km. There is a seismic sparse segment near Gongxian, the frequency and intensity of seismicity in the southeast side are obviously higher than that in the northwest side, and the earthquakes with larger magnitude are relatively deep, the focal depth is gradually shallower with the distance away from Gongxian. Seismic activity is sparse in the west and dense in the east in Gongxian-Junlian region, the predominant direction of earthquakes in the seismic dense area of the eastern segment is NE. Seismic activity extends in opposite direction in the easternmost part of the two earthquake concentrated area. The P-wave velocity structure at different depths in the study area is obtained using joint inversion method of source and velocity structure. In view of the predominant focal depth in this region, this paper mainly analyzes the velocity structure of the upper crust within 10km. Within this study area, the P-wave velocity of earthquake concentration areas is relatively high within 10km of the predominant focal depth, especially in the northwest of Gongxian and eastern Junlian area, the P-wave velocity on the southeast of Gongxian increases gradually with depth, especially at 6km depth. These high-velocity zones are generally related to brittle and hard rocks, where the stress is often concentrated. Comparing earthquake distribution and velocity structure, seismic activity in this area mainly occurs in high-low velocity transition areas, the inhomogeneity of velocity structure may be one of the factors controlling earthquake distribution. The transition zone of high and low velocity anomalies is not only the place where stress concentrates, but also the place where the medium is relatively fragile, such environment has the medium condition of accumulating a large amount of strain energy and is prone to fracture and release stress.  相似文献   

15.
2014年2月12日在新疆于田县发生了MS7.3地震,主震前一天在震区发生了MS5.4前震,震后余震活动频繁,由于震区台站十分稀疏和不均匀、地壳速度结构复杂,台网常规定位结果精度有限,很难从中获得序列的空间分布特征和活动趋势的正确认识.本文首先利用位于震区附近的于田地震台5年记录的远震波形数据,采用接收函数方法研究了震区附近的地壳结构,建立了震源区的地壳速度模型.在此基础上,联合震相到时和方位角对2014年于田MS7.3地震序列(从2014年02月11日-2014年04月30日,共计577次地震)进行了重新绝对定位.结果显示,(1) 重定位后的前震和主震震中位置明显向地表破裂带及其附近的阿尔金分支断裂(南肖尔库勒断裂和阿什库勒-肖尔库勒断裂)靠近,两者相距5.4 km,主震位置为36.076°N、82.576°E,震源深度为22 km, 前震位置为36.055°N、82.522°E,震源深度为19 km;(2) 本文重定位结果显示,余震序列沿NEE-SWW展布,优势分布长度约73 km、宽度约16 km,平均震源深度为14.8 km,其中77%的余震分布在地表破裂带的西南端,这部分余震中少数沿阿什库勒-肖尔库勒断裂分布,绝大多数沿北东东向的南肖尔库勒断裂分布,位于地表破裂带东北端的余震沿阿什库勒-肖尔库勒断裂分布,但发生在地表破裂带的余震极少;重定位后,位于地表破裂带西南侧的震中分布由台网目录的近南北向变为北东向,与地表破裂带、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂走向一致;(3) 沿重定位剖面的地震分布,可推断位于地表破裂带西南段的南肖尔库勒断裂与位于北东段的阿什库勒-肖尔库勒断裂倾向反向,南肖尔库勒断裂的倾向为SE,阿什库勒-肖尔库勒断裂的倾向为NW,这与本次地震野外考察得到的断裂性质一致.综合重定位结果、地表破裂带分布、震源机制解、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂的性质认为,2014年于田MS7.3地震的发震构造为阿尔金断裂西南尾段的两条分支断裂——南肖尔库勒断裂和阿什库勒-肖尔库勒断裂.  相似文献   

16.

本文联合利用甘肃及周边测震台网记录的古浪及周边地区4592次地震的P波绝对到时资料和相对到时资料,采用双差地震层析成像方法反演了古浪震源区高分辨率的三维P波速度精细结构.结果显示,浅部P波速度分布与地表地质之间具有很好的对应关系.皇城—双塔断裂带在6 km以上深度表现为高速异常带,而在6~15 km逐渐转换为明显的低速特征,之后再次转换为高速体.震区下部在10~20 km深度有一个尺度约200 km2的低速异常体,地震发生时破裂首先在该低速体发生,与主震空间位置非常吻合.主震区的岩石结构主要由奥陶纪变质砂岩、石英岩和加里东期的花岗岩等坚硬岩体组成.这种坚硬岩体对应的P波速度结构为高速体,有利于能量积累.武威盆地在20 km以上深度表现为明显的低速异常,在25 km深度之下,整体显示为高速体,表现出稳定块体的特征.表明武威盆地中下地壳和上地幔顶部已插入到冷龙岭隆起带之下.震区小震重新定位发现,皇城—双塔断裂带东、西两段表现出不同的力学运动性质,西段以逆冲运动为主,地震主要发生在断裂的下盘.而东段地震却主要发生在上盘,断层活动以局部拉张为主.我们还首次发现在皇城—双塔断裂带的中段与主破裂呈垂直方向存在有在主震发生时新产生的一条共轭断层,基于小震的断层面参数反演显示该断裂是一高倾角运动性质以右旋为主兼具正断的断裂.

  相似文献   

17.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

18.
The great Sanhe-Pinggu M8 earthquake occurred in 1679 was the largest surface rupture event recorded in history in the northern part of North China plain. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method. Based on the assumption that clustered small earthquakes often occur in the vicinity of fault plane of large earthquake, and referring to the morphology of the long axis of the isoseismal line obtained by the predecessors, we selected a strip-shaped zone from the relocated earthquake catalog in the period from 1980 to 2009 to invert fault plane parameters of this earthquake. The inversion results are as follows: the strike is 38.23°, the dip angle is 82.54°, the slip angle is -156.08°, the fault length is about 80 km, the lower-boundary depth is about 23 km and the buried depth of upper boundary is about 3 km. This shows that the seismogenic fault is a NNE-trending normal dip-slip fault, southeast wall downward and northwest wall uplift, with the right-lateral strike-slip component. Moreover, the surface rupture zone, intensity distribution of the earthquake and seismic-wave velocity profile in the focal area all verified our study result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号