首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大气加权平均温度(T m)的精度直接影响全球导航卫星系统(GNSS)水汽反演的结果。针对现有T m模型的参数、建模数据源有待优化及模型构建时仅依赖于单个探空站点或单一格网点数据等问题,本文提出融合FY-4A GIIRS数据与ERA5再分析资料,在此基础上引入滑动窗口算法对融合数据进行处理同时顾及经度、纬度和高程因子构建空间分辨率为0.5°×0.5°的T m经验模型(FY-ET m模型)。采用偏差(Bias)和均方根误差(RMS)作为精度评定指标,联合未参与建模的2020年探空数据、ERA5再分析资料及天顶对流层延迟产品,对FY-ET m模型及其反演的大气可降水量进行精度评定。结果表明:以探空数据为参考值,FY-ET m模型的年均Bias、RMS分别为-0.02、5.79 K,相比较于Bevis和GPT3模型分别提高了3.62(Bias)、0.8(RMS)和2.54(Bias)、0.63 K(RMS);以ERA5再分析资料为参考值,FY-ET m模型的年均Bias、RMS分别为0.01、3.32 K,相比较于Bevis和GPT3模型分别提高了0.97(Bias)、0.13(RMS)和2.94(Bias)、1.71 K(RMS),同精度优异的GPT3模型相比,FY-ET m模型在中国西部和北部地区也表现出了明显的精度改善;以GNSS站点得到的PWV为参考值,FY-ET m模型反演的PWV与GNSS站得到的PWV值精度相当,Bias变化范围为-0.5~0.5 mm。FY-ET m模型准确度高稳定性良好,只需输入位置和时间信息就能获取目标点的T m,能够在GNSS水汽反演中发挥重要的作用。  相似文献   

2.
大气加权平均温度(Tm)是地基GNSS水汽探测的关键参数.基于2016-2018年ERA5再分析资料,利用严密积分精确确定了中国区域陆态网测站的Tm值;并对Bevis公式和GPT3全球经验模型在中国区域的精度展开了评估分析.结果表明,在中国区域,基于ERA5内插温度的Bevis公式能较好反映Tm周日变化,其精度总体稍优于基于ERA-Interim月均值构建的GPT3模型;两个模型计算Tm值的年均偏差分别为1.49 K和-1.88 K,年均RMS分别为4.10 K和4.28 K.Tm模型值的精度大致呈由东南区域(RMS小于4 K)向西部区域(RMS为4.5~8 K)逐渐降低的趋势;此外,在中国区域两种Tm模型的精度具有明显的季节性变化,夏秋季模型精度较高、春冬季模型精度较低.  相似文献   

3.
大气加权平均温度(Tm)是全球导航卫星系统(GNSS)水汽监测的关键参数。针对中国区域地形起伏较大的特点,本文构建了顾及精细季节变化的Tm垂直递减率函数模型,在此基础上,利用2007—2014年的Global Geodetic Observing System(GGOS)atmosphere格网数据建立了中国区域的Tm格网新模型(简称为CTm模型)。以2015年GGOS格网数据和无线电探空资料为参考值,对CTm模型进行精度检验,并与常用的Bevis公式和GPT2w模型进行比较分析。结果表明:①以GGOS格网数据为参考值,CTm模型的年均偏差和均方根误差(RMS)分别为-0.52 K和3.28 K,相比于GPT2w-5和GPT2w-1模型,精度(RMS值)分别提高了27%和13%;②以探空数据为参考值,CTm模型的年均偏差和RMS误差分别为0.26 K和3.75 K,相对于GPT2w-5和GPT2w-1模型,精度分别提高了21%和16%,尤其在中国西部地区,CTm模型表现出更为显著的优势。此外,将CTm模型用于GNSS水汽计算,其引起的水汽计算RMS误差和相对误差分别为0.29 mm和1.36%。CTm模型不需要实测气象参数,因此,在中国区域的GNSS实时高精度水汽探测中具有重要的应用。  相似文献   

4.
针对广西地区探空站稀少,难以获得精确的T_m问题,GGOS atmosphere提供了利用ECMWF的相关资料计算而得到的时间分辨率为6h(UTC 00:00:00,06:00:00,12:00:00,18:00:00)、空间分辨率为2.5°×2°的全球T_m格网数据可以在没有气象数据的情况下获得较高时空分辨率的T_m,该文利用GGOS atmosphere T_m格网数据对广西地区4个探空站插值T_m,并用无线电探空数据计算的T_m检验其精度;对误差进行分析后,选取最优小波基与尺度对其残差去噪,利用去噪后得到的曲线建立T_m的改正模型。实验结果表明,插值T_m经基于小波去噪的模型改正后,其RMSE为1.29K;Bevis模型的RMSE为10.71K;GPT2_1W模型的RMSE为3.56K;改正模型精度优于传统模型,可以达到地基GPS反演GNSS-PWV的精度要求。  相似文献   

5.
针对很多测站不能提供实测气象数据的情况,本文对两种高精度的GPT系列经验模型进行验证。通过对两种模型获得的经验气象数据及对计算可降水汽非常重要的ZHD的精度进行分析,得出如下结论:GPT2w模型的精度要高于GPT2模型,且在无实测气象数据的情况下可以使用GPT2w模型来进行GNSS水汽反演。  相似文献   

6.
为了研究不同国际GNSS服务(IGS)星历产品对地基GPS反演可降水汽精度的影响,评估超快星历用于实时水汽反演的精度,该文借助Bernese5.2软件获取不同IGS星历产品解算的IGS跟踪站天顶总延迟,结合GPT2模型估算的气象参数反演得到大气可降水,最后与探空站资料计算的大气可降水进行对比分析。结果表明,利用超快速星历预报部分反演大气可降水结果的RMS在±8mm内波动,优于1cm,有助于实时探测大气可降水量的变化,进一步有效促进地基GPS在短临天气预报中的应用。  相似文献   

7.
针对目前地基全球卫星导航系统(GNSS)层析大气水汽精度不高的问题,本文提出对网格划分垂直方向非均匀分层的方法,提高了区域层析结果精度.基于多系统GNSS观测数据,对河南地区东经111.5°~115.5°,北纬33.6°~35.6°区域上空水汽分布进行层析探测,研究垂直分层方法对层析结果的影响,垂直方向采用均匀和非均匀两种分层方式,得到的水汽密度结果与探空反演水汽密度值都非常接近,对比来看,非均匀分层层析在相关系数、均方根误差和平均偏差等数据分析方面表现出了较好的数据精度,采用非均匀分层方法可以得到更优的大气水汽反演结果.  相似文献   

8.
主要研究了中国区域加权平均温度(T_m)与地表温度(T_s)的函数关系模型。为提高中国区域T_m的计算精度,收集了中国区域内2013-2015年76个测站的无线电探空数据,采用传统线性回归建模方法建立T_m与地表温度(Ts)的线性回归模型A;然后,顾及T_m的年周期变化,提出了一种改进回归模型B。利用2016年69个测站的探空数据对模型A和模型B进行检验,模型A与模型B的年均方根误差分别为±3.147K和±3.025K,而常用的Bevis模型年均方根误差为±3.385K。模型A与模型B的精度较之常用的Bevis模型分别提高了7%和11%。本研究成果可以提高GNSS技术探测大气可降水量的精度,对GNSS气象学的发展和完善具有积极意义。  相似文献   

9.
在地基GPS水汽反演过程中,针对因大气加权平均温度的精度而影响大气可降水量计算结果精度的问题,文中采用回归分析方法对香港地区2006-2016年的探空数据进行研究,构建适用于香港地区的单因子以及多因子两种大气加权平均温度计算模型.并使用两种模型分别预测2017年加权平均温度,与多种经验公式结果以及真值进行对比,单因子和多因子模型与真值的偏差在-5~5K范围内分别占比80.72%和85.26%,明显优于其他经验公式;且按季节分别建模对大气加权平均温度计算结果的精度并没有明显提高,但按昼夜分别建模能够使计算结果的精度得到明显的提高.因此为了能够使水汽反演计算时的精度得到提升,应当使用当地多年的探空气象资料构建适用于当地的加权平均温度计算模型,对于提高GPS反演大气水汽总量的精度具有重要意义.  相似文献   

10.
大气加权平均温度Tm是计算水汽转换因子和大气可降水量的重要参数。利用2007—2017年全球大地观测系统(global geodetic observing system, GGOS) Atmosphere Tm格网数据和欧洲中尺度天气预报中心(European centre for medium-range weather forecasts, ECMWF) 2 m温度数据,建立一种适合澳大利亚区域、顾及Tm残差季节性和日周期变化的Tm模型——qTm。此外,采用2018年的GGOS Atmosphere Tm格网数据和探空资料对该模型进行评估。结果表明,qTm模型在澳大利亚区域具有较高的精度和适用性,与GGOS Atmosphere Tm相比,qTm模型的年均偏差(Bias)和均方根误差(root mean square error, RMSE)分别为-0.31 K和1.97 K,相对于GPT2w-1和GPT2w-5模型,RMSE分别提高21.8%和25.9%;qTm模型值与探空积分值更符合,模型的年均Bias和RMSE分别为-0.44 K和2.45 K,相比GPT2w-1和GPT2w-5模型分别提高10.2% 和11.8%。qTm模型可为澳大利亚区域提供精确的Tm值,为该区域大气水汽分析和厄尔尼诺现象研究提供基础。  相似文献   

11.
高精度的对流层天顶湿延迟(ZWD)在GNSS高精度定位及大气水汽监测中具有重要作用。中国区域具有疆域辽阔、地形多变等特点,垂直方向存在规律难循的气流变化,而大多数ZWD模型仅采用单一函数对大气高度范围内变化进行拟合,或未考虑季节变化因素,因此在中国区域适用性较差。本文以中国区域MERRA-2大气再分析资料为数据源对ZWD展开深入研究,建立了一种顾及分段表达的中国区域ZWD模型(CZWD模型);并以中国区域89个探空站积分计算的ZWD数据为参考值检验模型的精度。结果表明,CZWD模型的年均偏差(Bias)和年均均方根值(RMS)误差分别为-2.9、21.9 mm,精度优于目前应用较广的GPT3模型,且提高了5%,在中国区域总体上显示出较优的精度和适用性。因此,CZWD模型对于中国区域GNSS导航定位及水汽监测具有重要意义。  相似文献   

12.
高精度和高时空分辨率的大气可降水量(precipitable water vapor, PWV)信息对于极端天气研究具有重要作用。传统的单一水汽探测技术获取的PWV因其系统设计的局限性存在精度差、时空分辨率低等缺陷。针对该问题,提出了一种基于多源数据的混合模型——全球温度气压湿度(global pressure and temperature 2 wet, GPT2w) +球谐函数(spherical harmonic function,SHF)+多项式拟合(polynomial fitting,PF),简称GSP模型。该模型通过GPT2w计算PWV的初始值,利用SHF拟合PWV的偏差序列,利用PF对模型偏差进行校正,并引入Bartlett检验确定GSP模型中多源数据的最优权值。选取2014年中国云南省26个全球导航卫星系统(global navigation satellite system, GNSS)测站和37个欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasting, ECMWF)气候再分析数据集(ECMWF reanalysis-interim, ERA-Interim)格网点(1°×1°)的数据为例,建立GSP模型并进行验证,发现GSP模型较传统PF模型的精度提升率为15%~18%。以ECMWF第5代气候再分析数据集(ECMWF reanalysis v5, ERA5)提供的PWV格网数据(0.25°×0.25°)为参考,GSP模型的平均均方根误差和偏差分别为1.64 mm、-0.25 mm。上述结果表明GSP模型具有较高的精度,对于极端天气预警具有重要作用。  相似文献   

13.
地基GNSS气象学是GNSS技术的一种新应用,其基本原理是利用GNSS信号穿过对流层时产生的湿分量延迟反演可降水量,而湿分量延迟和可降水量之间的转换参数是一个关于大气加权平均温度的函数,因此准确的求取大气加权平均温度是GNSS气象学中的关键。以徐州地区为例,利用探空数据建立加权平均温度模型,并与其他几种模型进行比较,结果表明本地化模型精度更高,更适合本地的水汽反演。  相似文献   

14.
加权平均温度(Tm)是将天顶湿延迟转换为大气可降水量的关键参数,针对青藏高原地区海拔高、地形起伏大、水汽高度分布复杂的特点,本文利用2010—2014年GGOS Atmosphere Tm格网数据和地表高程数据建立Tm垂直递减率函数,进而建立一种顾及Tm垂直递减率变化的适合青藏高原地区的新模型(QTm模型)。此外,利用2015年青藏高原地区14个探空站和GGOS Atmosphere Tm格网数据评估模型精度和适用性。试验结果表明,与GGOS Atmosphere Tm相比,QTm模型的年均Bias和RMSE分别为0.29和2.49 K,相对于GPT2w-1和GPT2w-5模型,RMSE分别提升了38.97%、67.06%;与探空数据相比,QTm模型的年均Bias和RMSE分别为0.16和2.90 K,相对于GPT2w-1和GPT2w-5模型分别提升了31.12%、39.46%。新模型的构建为青藏高原地区提供了可靠的Tm值,进而提供实时、高精度GNSS水汽信息。  相似文献   

15.
针对在地基GNSS水汽反演的过程中,天顶湿延迟转换为大气可降水量时如何建立精确的大气加权平均温度(Tm)模型的问题,该文在建立Tm模型前全面考虑了对Tm有显著影响的变量并选择最优回归子集。但分析发现,最优回归子集中各变量之间存在较强的相关性,这将会导致变量之间存在多重共线性,从而影响模型的稳定性和可靠性。选择2013—2015年相关气象数据作为变量并应用岭回归的方法削弱变量之间的多重共线性,建立稳定的多因子Tm回归模型。并利用该模型分别预测2016年1—12月、2019年1—7月的Tm,均方根误差分别为2.3 K和2.0 K,预测精度较高,这将为高精度的水汽反演奠定较好的数据基础。  相似文献   

16.
地基全球卫星导航系统(GNSS)水汽反演过程中需要大气加权平均温度Tm的参与,而饱和水汽压Es作为Tm计算过程中的一个重要变量影响着Tm,因此Es将会间接地影响大气可降水量(PWV)的反演精度.针对目前地基GNSS水汽反演研究中普遍采用的三种不同的饱和水汽压模型(Magnus-Tetens模型、BUCK模型、Goff-Gratch模型),本文就不同的饱和水汽压模型参与反演是否会引起水汽反演结果的差异进行了研究.以香港为研究区域,利用GAMIT解算了2016年旱雨两季(2、7月)的天顶湿延迟(ZWD),同时利用king's park探空站的探空数据通过数值积分计算得到旱雨两季(2、7月)的Tm,然后严格参照反演步骤编程模拟计算旱雨两季(2、7月)每天的PWV.最后对比并分析了不同饱和水汽压模型参与计算对Tm和PWV的影响及原因,结果表明:三种饱和水汽压模型参与计算得到的PWV与真值(探空站计算得到的PWV)之间不存在具有统计意义的显著性差异,因此均可被用来提供计算Tm时所用到的饱和水汽压Es,但是通过对比分析发现部分研究人员将BUCK模型中的变量T当作露点温度而非大气温度进行计算会使Tm产生较大的误差,进而对该误差进行了不合理性分析.本文的分析将会对后续地基GNSS水汽反演研究中的处理提供一定的参考.   相似文献   

17.
全球温度气压湿度(global pressure and temperature 2 wet,GPT2w)模型常被用于计算某一位置的气温、加权平均温度、气压以及水汽压等各种气象参数,是目前公开的标称精度最高的对流层延迟经验模型。利用中国区域参与全球气象交换的86个测站2013-2015年的气象探空数据,对GPT2w得到的各种气象参数进行精度检验及分析。实验结果表明,气温平均偏差为1.31℃,均方根误差为3.62℃;加权平均温度的平均偏差为-1.58 K,均方根误差为4.07 K;气压和水汽压平均偏差的绝对值在1 hPa以内,其均方根误差分别为6.98 hPa与3.04 hPa。利用2006-2015年的数据分析了不同纬度模型精度的周期性特征,结果表明,气温、加权平均温度、气压和水汽压的均方根误差均具有一定的年周期特性,且在不同的纬度区域其周期特性不同。总体而言,GPT2w模型在中国地区范围内具有较高的精度和稳定性。  相似文献   

18.
对流层延迟是GNSS导航定位的主要误差源之一.针对已有对流层天顶湿延迟(ZWD)垂直剖面模型存在建模仅采用单一格网点数据以及使用月均剖面数据等不足,本文提出了一种基于滑动窗口的ZWD垂直剖面格网模型构建方法,建立了一种顾及精细季节变化的高精度全球ZWD垂直剖面模型(GZWD-H模型).同时,联合2017年全球321个探空站资料,对GZWD-H模型的垂直插值及其在全球大地观测系统(GGOS)大气格网ZWD空间插值中的应用进行了精度检验,并与全球性能优异的GPT2w模型进行对比.结果表明:① 以全球探空站数据积分计算的ZWD分层剖面信息为参考值,GZWD-H模型在全球ZWD的垂直插值中均表现出了最优的精度和稳定性,相对于GPT2w-1和GPT2w-5模型分别提升了4% 和7%;②以全球探空站数据计算的地表ZWD信息为参考值,GZWD-H模型在GGOS大气格网ZWD产品空间插值中的精度相对于GPT2w-1和GPT2w-5模型分别提升了17% 和35%;③相对于GPT2w-1模型,GZWD-H模型进一步减少和优化了模型参数.因此,GZWD-H模型在全球GNSS大气探测和GNSS精密定位中具有重要的应用.  相似文献   

19.
GPT2模型的精度检验与分析   总被引:3,自引:1,他引:2  
GPT模型常被用于计算气温、气压等对流层延迟气象参数,针对其不足之处,Lagler提出了改进的全球经验模型GPT2,该模型不仅提高了GPT气温和气压模型的精度,而且可提供比湿、水汽压、映射函数等对流层参数。但是目前没有相关文献对GPT2的精度进行详尽的分析,本文利用ECWMF及NOAA提供的高精度气象数据,对GPT2气温、气压和水汽压模型进行精度检验及分析。结果表明,气温的Bias均值为-0.59°C,RMS均值为3.82°C左右;气压和水汽压的Bias均值绝对值在1mb以内,气压的RMS均值为7mb左右,水汽压则不超过3mb,不同纬度精度存在差异,三者均具有明显的季节性。总体而言,GPT2模型在全球范围内具有很高的精度和稳定性。  相似文献   

20.
利用地基GPS反演可降水量,需要准确求得水汽转换参数。为了提高区域GPS大气水汽反演的精度,分析了大气加权平均温度的时空特性及其与地面温度之间的函数关系;利用江苏地区2003—2011年的气象探空数据建立了适用于江苏地区的局地大气加权平均温度计算模型。比较江苏模型、Bevis模型和李建国模型求得的大气加权平均温度值,江苏模型的精度较Bevis模型和李建国模型分别提高33.14%和9.28%。由江苏模型得到的可降水量内符合精度约为11.12 mm,较GAMIT软件结果精度提高约7.91%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号