首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
DifferentialBV photometry of UX Ari obtained on 58 nights during 1984-85, 1985-86, 1986-87, and 1987-88 observing season is presented. We find that (B-V) is phase dependent with the system being reddest at the light maximum and we interpret this as due to the variable fractional contribution by the G5 V component to the total light at shorter wavelengths. An analysis of the available data indicates that at larger amplitudes of the photometric wave the brightness at maximum increases and that at minimum decreases and both converge to δV ≃ −1.0 mag at very low amplitudes. It implies that the low wave amplitudes are essentially due to more homogeneity in the surface distribution of spots rather than due to low levels of spot activity. The variation in wave amplitude is found to be near-sinusoidal with a period around 13–14 years  相似文献   

2.
Photoelectric observations of the RS CVn type non-eclipsing binary UX Arietis obtained at Nizamiah Observatory during the observing seasons of 1975–76, 1981–82 and 1982–83 are presented. The light curve of UX Ari showed a distortion wave with an amplitude inV varying from 0.02 mag during 1975–76 to 0.15 mag during 1982–83. An analysis of the available data shows that the light maximum is almost constant. It is also evident that the light-curve minimum decreases as the wave amplitude increases. The constant light at maximum,V = 6.51 ± 0.03 indicates the unspotted photospheric brightness. It is also suggested that the variation in meanV brightness is mainly due to spot activity and not due to intrinsic variation.  相似文献   

3.
We present new photometric data and analyze long-term UBV observations of three candidates for protoplanetary nebulae—F supergiants with infrared excesses at high Galactic latitudes—IRAS 18095+2704, IRAS 19386+0155, and IRAS 19500-1709. All these stars exhibit quasi-periodic low-amplitude variations caused by pulsations against the background of long-term brightness trends. For IRAS 18095+2704=V887 Her, we have found a pulsation period of 109 days and revealed a linear brightness trend—the star brightens at constant (within the limits of the measurement errors) yearly mean color indices. The light curve of IRAS 19386+0155=V1648 Aql in 2000–2008 is represented by a wave with a fundamental period of 102 days whose modulation with a close period of 98 days leads to variations with a variable amplitude. V1648 Aql also shows a systematic rise in V brightness along with a reddening. IRAS 19500–1709=V5112 Sgr exhibits irregular pulsations with periods of 39 and 47 days. The long-term variability component of V5112 Sgr may indicate that the star is binary.  相似文献   

4.
The results of photometric and polarimetric observations of the star Μ Cep at Byurakan Observatory are presented. Some interesting correlations between the parameters of the star’s brightness variation and the degree of polarization of the light are obtained. It is suggested that the recorded rapid changes in the degree of polarization may result from Μ Cep being a double star. Translated from Astrofizika, Vol. 43, No. 2, pp. 219-228, April–June, 2000.  相似文献   

5.
Results from optical photometric observations of the pre-main sequence star GM Cep are reported in the paper. The star is located in the field of the young open cluster Trumpler 37—a region of active star formation. GM Cep shows a large amplitude rapid variability interpreted as a possible outburst from EXor type in previous studies. Our data from BVRI CCD photometric observations of the star are collected from June 2008 to February 2011 in Rozhen observatory (Bulgaria) and Skinakas observatory (Crete, Greece). A sequence of sixteen comparison stars in the field of GM Cep was calibrated in the BVRI bands. Our photometric data for a 2.5 years period show a high amplitude variations ($\Delta V \sim2\mbox{$\Delta V \sim2\mbox{) and two deep minimums in brightness are observed. The analysis of collected multicolor photometric data shows the typical of UX Ori variables a color reversal during the minimums in brightness. On the other hand, high amplitude rapid variations in brightness typical for the Classical T Tauri stars also present on the light curve of GM Cep. Comparing our results with results published in the literature, we conclude that changes in brightness are caused by superposition of both: (1) magnetically channeled accretion from the circumstellar disk, and (2) occultation from circumstellar clouds of dust or from features of a circumstellar disk.  相似文献   

6.
Two bright spots shown by Voyager 2 images on Saturn's north temperate belt are discussed in terms of a simple photometric model in which the brightness differences are caused by obscuring matter above the main cloud layer. In the ultraviolet light, in which scattering by small particles is very effective, the spots are invisible. In the violet light they seem to be holes in the dark matter and therefore the brighter layer below it becomes visible. Also they could be rises in the bright matter. In the green light the spots are more complicated since this wavelength interval contains very strong emission spectra lines of ammonia.  相似文献   

7.
UBVRI photometric observations and models of spotting are presented for four noneclipsing RS CVn systems: IN Com (G5III/IV), IL Com (F8V+F8V), UX Ari (K01V+G5V), and V711 Tau (K1IV+G5V). A low amplitude variability caused by cold (T=1700K)spots which can occupy up to 19% of the star's surface is confirmed for the little-studied star IL Com. Long-term light curves are constructed and the stellar magnitudes and color indices of the unspotted photospheres are estimated for IN com, UX Ari, and V711 Tau. It is shown that UX Ari becomes bluer with decreasing brightness, so its variability cannot be fully explained in terms of cold spots. Models of spotting on In Com and V711 Tau are constructed from the full set of available photometric observations. The spots on both of these variables lie at middle latitudes and occupy up to 22% (In Com) and 33% (V711 Tau) of the stars' surfaces. Both stars manifest a tendency for the width of the spots to decrease as their area increases. This is a crude analog of the Maunder butterflies. These stars experience cyclical spot activity and have a differential rotation of the type found on the sun.  相似文献   

8.
Results from optical photometric observations of the PMS star V 1735 Cyg are reported. The star is located in the IC 5146 dark cloud complex—a region of active star formation. On the basis of observed outburst and spectral properties, V 1735 Cyg was classified as a FUor object. We present data from BVRI CCD photometric observations of the star, collected from March 2003 to January 2009. Plates from the Rozhen Schmidt telescope archive were scanned for a brightness estimation of the star. A sequence of sixteen comparison stars in the field of V 1735 Cyg was calibrated in BVRI bands. The data from photographic observations made from 1986 to 1992 show a strong light variability (ΔV=1m2). In contrast, the recent photometric data obtained from 2003 to 2009 show only small amplitude variations (ΔI=0m3). The analysis of existing photometric data shows a very slow decrease in star brightness—1m8 (R) for a 44 year period. The possibilities for future photometric investigations of V 1735 Cyg using the photographical plate archives is discussed briefly.  相似文献   

9.
Quasi-simultaneous photoelectric and spectroscopic observations of the active spotted star V 775 Her have been made for the first time and showed an increase in the equivalent width of the pure emission in the Ha line with a decrease in the star’s brightness. Such an increase was due to an increase in electron density in the active regions and demonstrates a connection between active regions and cool spots. The system’s photometric variability is fully described within the framework of a zonal model. The spotted regions occupy up to 42% of the star’s total surface if the temperature difference between the quiet photosphere and a spot is about 900 K. The ratio of the masses of the components of V 775 Her is estimated for the first time. Translated from Astrofizika, Vol. 43, No. 3, pp. 339-351, July–September, 2000.  相似文献   

10.
Multicolor photometric data are presented for the asynchronous polar V1500 Cyg during 2000–2009, i.e., 23–35 years after its outburst. Some examples of individual light curves of the system are shown. An analysis of these reveals large variations in its brightness and color with the phase of the orbital period owing to a “reflection effect” caused by reradiation from the side of the red dwarf facing the hot white dwarf and heated by its hard ultraviolet radiation. The variations in the O-C residuals and in the maximum intensity with the phase of the synodic period are illustrated. It is found that the amplitude A of the orbital fluctuations increases in proportion to the intensity I at a rate dA/dI=0.64. This behavior of V1500 Cyg is most likely caused by periodic shading of the illuminated part of the red dwarf, where the degree of shading depends on the phase of the synodic cycle.  相似文献   

11.
We present new polarimetric and photometric observations of the high-albedo Asteroid 64 Angelina in the UBVRI wavebands at phase angles ranging from 0.43° to 13.02° during oppositions in 1995, 1999, and 2000/2001. The polarization opposition effect has been observed in the form of a sharp peak of negative polarization with amplitude of about −0.4% centered at αmin≈1.8°, which is superimposed on the regular negative polarization branch. The amplitude of the polarization opposition effect appears to be apparition-dependent. Our photometric data confirm the early detected by Harris et al. [1989. Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus 81, 365-374] of a very strong and unusually narrow opposition spike, i.e., brightness opposition effect, for Angelina. Thus, 64 Angelina is the first asteroid for which both the polarization opposition effect and the brightness opposition effect have been detected. We observed that the polarization opposition effect as well as the regular negative polarization branch depends on the wavelength of scattered light, but in different manners. In addition, the colors B-V and V-R show little phase-angle dependence, while the color U-B increases with increasing phase angle, thus indicating that the amplitude of the brightness opposition effect is larger in the U band and almost the same in the B, V, and R bands. It appears that all colors indices begin to increase with decreasing phase angle to zero. The composite lightcurve computed with a period of 8.752 h has amplitude of 0.13 magnitude.  相似文献   

12.
The spotting activity of the dwarf system CM Dra (dM4.5+dM4.5) is analyzed using new photometric observations taken in the spring of 2005 using the multichannel photometer and 70-cm telescope at the Astronomical Observatory of the Urals State University. A light curve constructed for this system revealed a rotational brightness modulation of low amplitude, 0m.016, owing to cold spots analogous to those on the sun. The longitude of maximum spotting is found to be 263°±4° perpendicular to the line between the centers of the components. A comparison with our earlier observations in 1996-1997, as well as with published data, shows that during different epochs a spotting maximum is observed in the hemisphere of the principal component which faces the secondary component and is shifted by 30° relative to the line between the centers along the direction of rotation of the star. This may indicate a role for tidal effects in creating the magnetic activity of CM Dra. Grouping of flares in time is observed, even for long-term observations. This appears to be related to the passage of large active regions across the star’s disk and may indicate a possible cyclical activity of CM Dra.  相似文献   

13.
This is a study of photometric data from the Hipparcos catalog and spectrophotometric observations by a group of Pulkovo observers in Bolivia of the variable star 2 Cen (V806 Cen). Fourier analysis yields a more precise value of 12.57 d for the period of the brightness variation instead of 12.0 d. Light curves constructed from the photometric data are found to have a smooth systematic variation with an amplitude on the order of 0m.2. Short duration changes in the brightness by 0m.1 take place over times of a few hours. The differences in the temperature and radius of the emitting layer at maximum and minimum brightness, which occur at phases of 0.00 and 0.58, respectively, are found. At the maximum the radius was smaller by 6% and the temperature was higher by 70 K; these differences may characterize the star’s pulsations.  相似文献   

14.
B andV photometry of DM UMa obtained between January, 1980 and June, 1984 is presented. Analysis yields a mean photometric period 7d.478±0d.010, compared to the known oribital period of 7d.492±0d.009. Light curves obtained during any two seasons do not agree in any of the following: shape, amplitude, phases of the light maxima and minima, mean light level, or brightness at the light maxima and minima. From the change inB-V over the photometric period, we concludethat the hemisphere visible during the light minimum is cooler than that seen during light maximum. The mean colorB-V=1m.065±0m.002 is consistent with K1 III or K2 IV. Phases of light minima lie on two well-separated groups with different slopes; the corresponding periods are 7d.471±0d.002 and 7d.481±0d.001, in dicating that both migrate linearly towards decreasing orbital phase. In terms of the starspot model this indicates that two respective centers of activity were situated at different longitudes and latitudes on a differentially rotating star. From circumstantial evidence we infer that the dark region seen from 1979 onwards disintegrated sometime between the 1982 and 1983 observing seasons, leaving behind an area of relatively high surface brightness. We can put a lower limit of about four years on the lifetime of a center of activity.  相似文献   

15.
We present the results of studying the spectral and photometric variability of the luminous blue variable star V532 in M33. The photometric variations are traced from 1960 to 2010, spectral variations—from 1992 to 2009. The star has revealed an absolute maximum of visual brightness (1992–1994, high/cold state) and an absolute minimum (2007–2008, low/hot state) with a brightness difference of ΔB ≈ 2.3 m . The temperature estimates in the absolute maximum and absolute minimum were found to be T ∼ 22000 K and T ∼ 42000 K, respectively. The variability of the spectrum of V532 is fully consistent with the temperature variations in its photosphere, while both permitted and forbidden lines are formed in an extended stellar atmosphere. Broad components of the brightest lines were found, the broadening of these components is due to electron scattering in the wind parts closest to the photosphere. We measured the wind velocity as a difference between the emission and absorption peaks in the PCyg type profiles. The wind velocity clearly depends on the size of the stellar photosphere or on the visual brightness, when brightness declines, the wind velocity increases. In the absolute minimum a kinematic profile of the V532 atmosphere was detected. The wind velocity increases and its temperature declines with distance from the star. In the low/hot state, the spectral type of the star corresponds to WN8.5h, in the high/cold state—to WN11. We studied the evolution of V532 along with the evolution of AGCar and the massive WR binary HD5980 in SMC. During their visual minima, all the three stars perfectly fit with the WNL star sequence by Crowther and Smith (1997). However, when visual brightness increases, all the three stars form a separate sequence. It is possible that this reflects a new property of LBV stars, namely, in the high/cold states they do not pertain to the bona fide WNL stars.  相似文献   

16.
Investigating more than 270 nightly mean magnitudes of the long-period RS CVn binary HK Lac, we can draw some conclusions about the nature of its complicated light variations. The mean brightness, the apparent photometric period, and the shape of the light curve all show strong variations. Analysis with a starspot model, assuming two large spots and a general uniform spottedness, indicates two comparably large spots which appear to have maintained their separate identities for the last 15 yr and drifted in longitude separation from each other smoothly by only about 45°. The phase of the two spots indicates both are rotating very nearly synchronously with the orbital motion, one slightly (0.025%) faster and the other slightly (0.080%) slower. the latitudes of the two spots, one farther above the equator and one closer to the equator, are consistent with solar-type differential rotation and yield an estimate of 25±12° for the co-rotating latitude. A correlation between mean spot latitude and instantaneous photometric period yields another estimate of 31±2°, in agreement with the first.  相似文献   

17.
We present a new inversion code that reconstructs the stellar surface spot configuration from the light curve of a rotating star. Our code employs a method that uses the truncated least‐squares estimation of the inverse problem's objects principal components. We use spot filling factors as the unknown objects. Various test cases that represent a rapidly‐rotating K subgiant are used for the forward problem. Tests are then performed to recover the artificial input map and include data errors and input‐parameter errors. We demonstrate the robustness of the solution to false input parameters like photospheric temperature, spot temperature, gravity, inclination, unspotted brightness and different spot distributions and we also demonstrate the insensitivity of the solution to spot latitude. Tests with spots peppered over the entire stellar surface or with phase gaps do not produce fake active longitudes. The code is then applied to ten years of V and I ‐band light curve data of the spotted sub‐giant HD291095. A total of 22 light curves is presented. We find that for most of the time its spots were grouped around two active longitudes separated on average by 180°. Switches of the dominant active region between these two longitudes likely occurred about every 3.15±0.23 years while the amplitude modulation of the brightness occurred with a possible period of 3.0±0.15 years. For the first time, we found evidence that the times of the activity flips coincide with times of minimum light as well as minimum photometric amplitude, i.e. maximum spottedness. From a comparison with simultaneous Doppler images we conclude that the activity flips likely take place near the rotational pole of the star. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The multicolor light curves (UBVRI) of HU Vir have been analyzed to study starspots for epochs 1987 and 1989. The term 'photometric imaging' has been used for predicting cool surface spots by photometric data. Assuming the number of spots and the area are about the same for the two hemispheres, the distributive solar analogy is introduced as a tool to constrain free values of spot parameters into unique values. Therefore, final fitting parameters are claimed unique in a sense that they are independent of free initial guesses. The light and color variations of HU Vir are better explained without polar spots. Finally, the spots are found to be ∼ 1600 K cooler than the T∼ 5000 K of this cool subgiant and cover ∼ %13.9 of the total surface at ±8.0 degrees from the equator for the epoch 1987. The spots at the epoch 1989 are found to be ∼ 2040 K cooler covering ∼ % 12.7 area at ± 27°.7 latitudes. Problems of photometric imaging and possible solutions with distributive solar analogy have been discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
We present the analysis of 20 years of time‐series BV photometry of the SB1 RS CVn binary HD 89546. The system's yearly mean V brightness, the BV color index, the photometric period, and the light curve amplitude all show clear cyclic variability with an ≈9‐year time scale. We also find some evidence for brightness variability on a time scale longer than the 20‐year time span of our observations, perhaps indicating a longer cycle analogous to the solar Gleissberg cycle. We estimate the unspotted V magnitude of HD 89546 to be 7.m154, which is ≈0.m2 brighter than the observed maximum brightness. Spot modelling of the system shows that spot temperature variations affect the observed BV color as well as the V brightness. Two active longitudes are observed, centered around 180° and 360° longitude on the G9 III primary, each covering a longitude range of 120°. Furthermore, two inactive longitude zones are seen spanning only 60° between the two active longitudes. The longitudinal distribution of the spots exhibits no strong cyclic variability but does show rapid jumps of 120° that look like the flip‐flop phenomenon. We estimate the differential rotation coefficient of the star as k = 0.086 by considering the range of observed photometric period variations and assumed latitudinal spot variations over 45° (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This is a study of observations of the photometric quantities Vt and Bt, reported in the Hipparcos catalog, for 15 standard stars in order to search for microvariability and rapid variability in their emission. The microvariability is found to be characterized mainly by smooth fluctuations in the brightness. Changes in the magnitudes of the stars HD 28355 and HD 130109 with a period of ~150 min and an amplitude <0m.02 appear to be caused by vertical shifts in their photospheres. Changes in the magnitudes with an amplitude of ~0m.01 and a period of 11.4d in the star e Eri were related to the rotation of spots. A similar microvariability period and amplitude in the star 51 Peg most likely originates in the influence of a planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号