首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Podljubelj mercury mine lies in the NW part of Slovenia. The ore is of hydrothermal-vein type. The ore deposit was exploited between the years 1557 and 1902. Total production of the mine was 110000 tons of ore (360 tons of Hg). A smelter located close to the mine had been in operation since 1855. The waste material from the mine and the smelter was dumped in close vicinity of the mine. Total quantity of the waste has been estimated at 170000 tons. In order to establish environmental impacts, soil and stream sediment samples were investigated. Soil samples were collected at two different depths (horizons A and B) in a 100 m grid within an 88 ha area. In the vast area also 11 samples of stream sediments were considered. Heavy metals were determined by means of cold vapor atomic absorption spectrometry CV-AAS after aqua regia digestion. Based on the chemical analyses of samples, the estimated mercury mean for soils is 3.67 mg/kg (0.35-244 mg/kg) for horizon A and 1.39 mg/kg (0.17-71.7 mg/kg) for horizon B. The estimated mercury mean for stream sediments is 0.64 mg/kg (0.065-1.36 mg/kg). The concentrations of mercury in soils generally decrease with depth and distance from the mine. The highest content of Hg was determined in a sample taken in the immediate vicinity of the smelter (719 mg/kg). The results have shown that on the 9 ha of the study area, the contents of Hg in soils exceeded the officially set limit value for soils (10 mg/kg). High contents of Hg in soil around the abandoned smelter are a consequence of former atmospheric emissions and technological losses. High contents of Hg were also found in the mine and smelter waste dump. At the edges of the study area and in the samples of stream sediments, Hg concentrations are low.  相似文献   

2.
3.
Acid mine drainage (AMD) has been recognized as a major environmental pollution problem over past decades. This pollutant effluent is complex and is characterized by elevated concentrations of iron and sulfate, low pH, and high concentrations of a wide variety of metals depending on the host rock geology. Massive inadvertent discharges from acid mines have given rise to dramatic cases of ecological damage. These events indicate an improved understanding of the mechanism controlling metal transport to the river is important, since the aquatic ecology will be affected, to some degree, dependent on the phase (dissolved or particulate) in which the metal is transported. In this study, polluted water samples were collected along the Hengshi River near the Dabaoshan mine, Guangdong, China, in April 2005. The concentrations of dissolved Cu, Zn, Cd and Pb have been determined using ICP-MS and the chemical speciation of those metals in suspended particles was examined using BCR methods and SEM/EDX mineralogical analysis. Combining these two sets of data, the intention was to develop geochemical concepts, which explain the behavior of Cu, Zn, Cd and Pb in particle-water interactions of heavy metals in AMD. The results show that the dissolved heavy metals exhibited non-conservative behavior in the Hengshi River. The dissolved and particulate Cu, Zn, Cd and Pb have the similar spatial distribution, which decreased gradually along the river except in the lower reaches because of the absorption-desorption between dissolved and particulate phases. Although the metal concentrations in both phases were elevated, dissolved metals were dominant and had the maximum concentrations in the low pH region.  相似文献   

4.
Molecular biomarkers are the important maturity parameters for sedimentary organic matter.They have also been widely used for determining the maturity of organic matter in ore deposits. However,during the study of organic matter in the Kupferschiefer from the Lubin mine, it had been found that the biomarkers were influenced by sulfide formation. In order to probe into the degree of influence on biomarkers, seven samples collected from a Kupferschiefer section from the Lubin mine were analyzed by various geochemical methods. The results indicated that in the samples with higher copper contents, the values of biomarkers are lower than in the samples with lower copper contents. In highly mineralized samples, hydrogen donation for thermochemical sulfate reduction (TSR) occurred in alkylated phenanthrenes and naphthalenes, leading to the decrease of 12 biomarker parameters during the Kupferschiefer mineralization.  相似文献   

5.
《Applied Geochemistry》2001,16(11-12):1377-1386
The heavy metal contamination and seasonal variation of the metals in soils, plants and waters in the vicinity of an abandoned metalliferous mine in Korea were studied. Elevated levels of Cd, Cu, Pb and Zn were found in tailings with averages of 8.57, 481, 4,450 and 753 mg/kg, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Thus, significant levels of the elements in waters and sediments were found up to 3.3 km downstream from the mining site, especially for Cd and Zn. Enriched concentrations of heavy metals were also found in various plants grown in the vicinity of the mining area, and the metal concentrations in plants increased with those in soils. In a study of seasonal variation on the heavy metals in paddy fields, relatively high concentrations of heavy metals were found in rice leaves and stalks grown under oxidizing conditions rather than a reducing environment (P<0.05).  相似文献   

6.
Based on two-dimensional heat-conduction equations with a phase-change component, this study investigates the impact of underground mining on the permafrost environment in an opencast coal mining pit. The dynamics of the maximum thawed and freezing depths at different depths around a borehole wall are determined. The spatial distributions of these dynamics are also determined at different locations of the wall profile. The results show that (1) the maximum freezing depth tends to increase over 100 years; (2) the maximum thawed depth increases along a borehole wall over 100 years. In particular, the maximum thawed depth increases faster near the junctions of permafrost and seasonally frozen soil; (3) due to the small cross section of mining laneways, coal mining does not cause rapid increases in permafrost temperature around borehole walls. Once disturbance to permafrost around a borehole wall decreases, the once-insignificant effect of temperature will become more obvious. Underground mining does have some impacts on permafrost surrounding borehole walls, but it does not cause large areas of deformation due to thermal disturbance.  相似文献   

7.
As one of the largest copper–molybdenum (Cu–Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978 and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment.  相似文献   

8.
Half a millennium mercury production at Idrija is reflected in increased mercury contents in all environmental segments. The bulk of roasting residues from the middle of the 19th century to 1977 was discharged directly into the Idrijca River, and the material was carried at high waters to the Soca River and farther into the Adriatic Sea. It has been estimated that 45500 tons of mercury were emitted into the environment during the operating period of the mine, which ceased production in 1994. In the lower reaches of the Idrijca the riverine deposits with high mercury contents have been, and will be in the future a source of mercury polluted sediment. Stream sediments were monitored at the same locations along the Idrijca and Soca rivers (70 kin) every 5 years since 1991 (1991-2005). Grain size distribution was determined by dry sieving and fractions for geochemical analysis were prepared (〈0.04 and 〈0.125 mm). Soils on river terraces were sampled at 5 localities in the lower course of Idrijca. At two locations of the terrace profiles the samples of averaged meadow forage and plantain (Plantago lanceolata) were collected within a 50-meters radius. We found that there was no decrease in mercury concentration in active river sediments during the last 20 years. Upstream from the Idrija Town the mercury concentrations in active river sediments vary from 1 to 10 mg/kg (average 3.3 mg/kg). From Idrija to Spodnja Idrija the mercury concentrations increase extremely and vary greatly (32-4,121 mg/kg, the average is 734 mg/kg). From Spodnja ldrija to the Idrijca-Soca confluence is the average 218 mg/kg, and 57 mg/kg downstream in the Soca River sediments.  相似文献   

9.
The ores of the Yata gold mine in China are rich in arsenic and antimony, so the exploitation of this mine may also lead to the release of As and Sb to adjacent environments, such as stream water, stream sediment, soil, plants, and crops. To understand the environmental impact of mine tailings, samples of water, sediment, soil, plant and crop were collected and analyzed. In summer of 2005, the tailings dump was seriously flushed by a heavy flood, and the mine waste was transported far away. Samples were collected in December of 2004 and January of 2006, respectively, and the impact of the flood on the release of toxic elements was evaluated. The result shows that the Yata creek, which drains the mining area, was severely contaminated by As and Sb. The dissolved As and Sb in water are 86-1140 μg/L and 65-370 μg/L, the particulate As and Sb are 38-2100 μg/L and 25-420 μg/L, whereas As and Sb in the sediment are 190-760 μg/g and 69-210 μg/g, respectively. In water environment, As and Sb show a similar feature to SO4^2- since As and Sb exist dominantly as anions--H2AsO4^-, HAsO4^2- and SbO3^-. In contrast to Fe, Cu, Pb, Zn, which migrate mostly in particulate form, As and Sb tend to transport in dissolved form.  相似文献   

10.
Anthropogenic activities, especially resulting in changes in the water conditions, usually disturb biological and agricultural functions of grasslands, leading to their degradation, often on large areas. Remote sensing observations of such changes in grassland ecosystems evoke a great interest, but they are still a difficult task, especially when performed on industrial and mining areas. This paper presents a new effective method of remote sensing of grassland moisture conditions based on temperature–vegetation dryness index (TVDI) calculated from free Landsat imagery, and employing the TVDI spatial variability estimated from a semivariance analysis. The practical applicability of the method is demonstrated on the example of monitoring of the extensive neighborhood of lignite open-cast mine within a period of a few years. Besides, the developed method was validated at the studied area, using in situ information. Thus, we demonstrated that TVDI may serve as an effective indicator of grassland moisture conditions, even in problematic areas.  相似文献   

11.
A study of soils and four flourish plants in the heavy metal polluted area by lead/zinc mine in northwestem Guizhou Province. In this study four plants were collected, the species were: Sambucus Chinensis Linn, lxeris gracilis (DC.) stebb, Buddlej daxidii Franch.ex.sinarum lmp. and Senecio scandens. The fractions of heavy metals in the soil were distinguished by the short sequential extraction procedure (I. Maiz, 1997), the available fractions and residual fractions of heavy metals in the soil could be separated. The plant digestion was effected by means of the microwave digest system (Durali Mendil, 2004). In each step Pb, Zn and Cd were analyzed by FAAS. This study analyzed the heavy metals (Pb, Zn, Cd) contents of the soil and plant. It is found that the contents in the plant increased linearly with heavy metal concentrations in soil. The concentrations of Pb, Zn, Cd in the four plants follow the order of Zn〉Pb〉Cd. Sambucus Chinensis Linn and lxeris gracilis (DC.) stebb were proved to have good metal-enrichment and transport ability for heavy metals in the soil.  相似文献   

12.
《Applied Geochemistry》2002,17(8):1081-1092
Different types of fine-grained chemical precipitates were characterized in the surroundings of the pyrite-chalcopyrite mine of Libiola (Northern Italy). Both water chemistry and sediment composition were used to investigate metal mobility near the mine area. Local drainage waters were very acidic (with a pH as low as 2.5) and were rich in dissolved metals (Fe, Al, Cu, Zn, Mn, Ni). Sediments associated with low pH water (pH <4.5) were ochreous mixtures of schwertmannite and goethite with traces of jarosite. Their chemistry was dominated by Fe and they had, compared to other sediments investigated, low concentrations of other metals. When the acidity decreased gradually, other precipitates formed. At a pH of approximately 5, a poorly crystalline, whitish, Al-rich precipitate occurred. At a pH between 6 and 7, a poorly crystalline, blue, Cu (Zn) rich phase was present. These “sequential” precipitation events progressively reduced the metal loading typical of the acidic mine water when there was a gradual mixing with normal water. When a sudden mixing between normal waters (pH ∼8, Ca–HCO3, low metal bearing) and acidic waters took place, a rapid flocculation occurred of mixed precipitates containing Fe, Al and trace elements.  相似文献   

13.
This study aims to assess the extent of metal accumulation by plants found in a mining area in Hamedan Province in the central west part of Iran. It also investigates to find suitable plants for phytoextraction and phytostabilization as two phytoremediation strategies. Plants with a high bioconcentration factor (BCF) and low translocation factor (TF) have the potential for phytostabilization while plants with both BCFs and TFs greater than one have the potential to be used for phytoextraction. In this study, shoots and roots of the 12 plant species and the associated soil samples were collected. The collected samples were then analyzed by measurement of total concentrations of trace elements (Pb, Zn, Mn and Fe) using atomic absorption spectrophotometer. Simultaneously, BCF and TF parameters were calculated for each element. Results showed that although samples suitable for phytoextraction of Pb, Zn, Mn and Fe and phytostabilization of Fe were not detected, Scrophularia scoparia was the most suitable for phytostabilization of Pb, Centaurea virgata, Echinophora platyloba and Scariola orientalis had the potential for phytostabilization of Zn and Centaurea virgata and Cirsium congestum were the most efficient in phytostabilization of Mn. Present study showed that native plant species growing on contaminated sites may have the potential for phytoremediation.  相似文献   

14.
The study aimed to assess the heavy metals(K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Pb, Sr, Zr) contamination in the soil of mine affected Singaran river basin and to analyse spatial variation in the contamination level considering 32 soil samples. Elemental analysis of soil samples has been performed through Energy Dispersive X-ray Analysis(EDX) to quantify the elemental concentration(mg kgà1). Heavy metal concentrations have been assessed through geo-accumulation index(Igeo) and enrichment factor(EF).Indices showed soils have moderate accumulation of most of the metals with moderate enrichment of Sr,Zr, Zn, Cu and Ni. Soil contamination level assessment has been carried out using indices like Contamination Factor(CF), degree of contamination(C_(deg)), modified degree of contamination(m C_(deg)) and Pollution Load Index(PLI). CF shows moderate to considerable contamination by Sr, Zr, Ca, Cu, Mn, Zn and Ni. Mean indices values(m C_(deg)and PLI for the entire basin are 3.38 and 2.23 respectively) show low to moderate level of soil contamination. These indices result have been mapped and analysed in GIS platform to get spatial variation of pollution level. Opencast mines dominate middle catchment area and so is comparatively contaminated. Sample sites 11, 18 and 25 evidenced high values of all indices of pollution load. From the ecological standpoint Ecological Risk Factor(Er) and Potential Ecological Risk Index(RI) have been estimated to assess regional threat to native soil environment and it shows low ecological risk potential. Analysis shows that mine dominated soil of the entire Singaran basin is less contaminated in all respect but tends to the moderate contamination level at the mid-catchment area,especially by Sr, Zr, Zn, Cu and Ni.  相似文献   

15.
Geothermometric constraints on auriferous shear zones of the Renco mine in the Northern Marginal Zone of the late-Archaean, granulite-facies Limpopo Belt in southern Zimbabwe indicate that deformation and associated mineralization occurred at temperatures of at least 600 °C up to more likely 700 °C. Mid- to upper-amphibolite facies conditions during mineralization correspond to the regional-scale retrogression of granulite facies wall rocks during the late-Archaean thrusting of high-grade metamorphic rocks of the Northern Marginal Zone onto low- to medium-grade granite-greenstone terrains of the Zimbabwe craton. Mineral assemblages indicate that the ore fluid was moderately oxidized with log fO2 values between 10−17 and 10−18 bars with high H2S activities of 0.25–0.75. Elements enriched in the shear zones include Au, S, Fe, Cu, Mo, Bi, Te, Ni, Co, and H2O, Au and Cu being the most enriched. Geochemically, Au correlates with Cu but not with S, which, together with the fact that gold is only rarely intergrown or in direct contact with sulfides, possibly indicates a transport of gold as a chloride complex. The siting of gold along fractures or within implosion breccias suggests that gold was precipitated due to fluid immiscibility induced by catastrophic fluid pressure drops during seismic slip events. Fluid inclusions are predominantly CO2 (±CH4 ± N2)-rich, but petrographic work indicates that fluid inclusions have undergone extensive post-entrapment modifications due to the pervasive recrystallization of mineral textures in the high-temperature shear zones. The mineralized shear zones are enriched in 18O compared to wall-rock enderbites, which is interpreted to represent an influx of externally derived fluids of probably metamorphic origin. Based on temporal and spatial relationships between mineralization, late-Archaean overthrusting of the Northern Marginal Zone onto the Zimbabwe craton, and coeval amphibolite-facies hydration of granulites, we suggest that the Renco mineralization formed in a mid-crustal environment from metamorphic fluids that were generated from dehydration of subcreted greenstone terrains of the Zimbabwe craton. Received: 27 October 1998 / Accepted: 13 August 1999  相似文献   

16.
Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow.  相似文献   

17.
What happens when an Andean family finds gold on its land? As mining corporations rapidly claim surrounding properties on rugged terrain near Mount Mismi, a water-supplying deity overlooking Peru’s Colca Valley, the Flores family is springing into action to beat the Buenaventura mining company to the gold that might be hidden within. The global land rush has been pronounced in Peru, whose mineral resources have largely been responsible for rapid economic growth but whose profits remain restricted to a relative few. The Flores family, many of its members underemployed, are engaged in a costly race against time to constitute themselves as an enterprise, rent equipment, formalize their title, and fulfill other rituals necessary for legitimating their own effort to access what they see as their small share of Peru’s mineral wealth, against the specter of state subsoil rights and corporate power. They are simultaneously racing to seek the land’s permission, via rituals like the pago a la tierra (offering to the earth) and the provision of spiritually infused chicha (fermented maize and barley). Through an ethnographic focus on the exemplary case of the Flores property and the diverse rituals essential to extracting its prosperity, this article asks how the Peruvian state’s categories of legitimate land use articulate with a perspective acknowledging land as a powerful non-human agent with its own requirements for becoming investable. I argue that beyond a simple dichotomy between official and indigenous rituals of legitimation, the Flores’ urgent race to render land investable puts multivalent ontologies and ethics to work together. In doing so, I further argue, family members draw on years of engagement with development projects and non-governmental organizations focused on promoting explicitly indigenous entrepreneurship. They are thus forging new interpretations of identity-based empowerment that complicate any stereotypical relationship between environmental sustainability and indigeneity.  相似文献   

18.
Spatial distribution patterns of As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, U and Zn were determined in topsoil samples collected after 40 years of chemical remediation conducted in the inoperative “Staszic” pyrite–uranium mine in the Holy Cross Mountains, south-central Poland. Soil samples were taken from 58 sites using a systematic random sampling design. Selected samples were subjected to an X-ray diffractometry analysis on bulk soils and separated clay fractions. Hematite, goethite and gypsum are common mineral phases in soil samples. Technogenic soils developed on reclaimed mine spoils show uniform spatial element distribution patterns and additionally a distinct enrichment in As, Pb, Mn, U and Zn. Mineral and chemical composition of soils vs. rocks points to the lithogenic source of the determined elements. The results of chemical analysis have been used for evaluation of geochemical background of trace elements in the study area with the iterative 2σ-technique. This investigation shows that using mean crustal element concentrations (Clarke values) as proxies of threshold values in soils are not useful for determination of strongly positive geochemical anomalies. A modified enrichment factor, i.e. a local enrichment factor, is proposed for identification of sites where soils are contaminated.  相似文献   

19.
20.
《Applied Geochemistry》2001,16(11-12):1369-1375
The heavy metal contamination of soils and waters by metalliferous mining activities in an area of Korea was studied. In the study area of the Imcheon Au–Ag mine, soils and waters were sampled and analyzed using AAS for Cd, Cu, Pb and Zn. Analysis of HCO3, F, NO3 and SO42− in water samples was also undertaken by ion chromatography. Elevated concentrations of the metals were found in tailings. The maximum contents in the tailings were 9.4, 229, 6160 and 1640 mg/kg extracted by aqua regia and 1.35, 26.4, 70.3 and 410 mg/kg extracted by 0.1 N HCl solution for Cd, Cu, Pb and Zn, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Because of the existence of sulfides in the tailings, a water sample taken on the tailings site was very acidic with a pH of 2.2, with high total dissolved solids (TDS) of 1845 mg/l and electric conductivity (EC) of 3820 μS/cm. This sample also contained up to 0.27, 1.90, 2.80, 53.4, 4,700 mg/l of Cd, Cu, Pb, Zn and SO42−, respectively. TDS, EC and concentrations of metals in waters decreased with distance from the tailings. The total amount of pulverized limestone needed for neutralizing the acid tailings was estimated to be 46 metric tons, assuming its volume of 45,000 m3 and its bulk density of 1855 kg/m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号