首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The newly discovered periodic comet P/2004 A1 (LONEOS) is found to have experienced a recent capture into its present orbit, following a close approach to Saturn in 1992 to within 0.032 AU. This induced orbital change transfered the comet into an orbit tangent to that of Jupiter, which will, after a close passage in 2026, gain control by further decoupling it from the influence of Saturn. A long‐term orbital investigation yields support that the comet is on its first sojourn into the inner solar system. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The newly discovered periodic comet P/2008 T1 (Boattini) is found to have experienced a recent capture into its present orbit, following a close approach to Saturn in 1995 to within 0.17 AU. This orbital change transferred the comet into an orbit tangent to that of Jupiter, which lead to an even closer passage within 0.02 AU with that planet in 2003 decoupling it from the influence of Saturn (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Comet C/1853 E1 (Secchi) has a hyperbolic orbit with eccentricity 1.01060 and perihelion outside of the Earth's orbit. Integrating the orbit with barycentric coordinates backwards to 50000 AU, the approximate edge of the Oort cloud, shows that the orbit remains hyperbolic. This is still true even if plutoids additional to Pluto are included in the integration. Nor does including Galactic tidal and disc effects and possible nongravitational forces change the orbit to a high eccentricity ellipse. Although certain factors, such as unknown massive plutoids, gravitational effects by interstellar gas clouds, or unmodelled nongravitational forces operating on the comet, could change this situation, the tentative conclusion that the origin of this comet is extrasolar remains the one most consistent with the observations (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
New orbits for comet C/1843 J1 (Mauvais) and comet C/1853 W1 (van Arsdale) are calculated. Both orbits are hyperbolic, with e = 1.001145 and semi‐major axis a = –1412.18 AU for Mauvais and e = 1.000700 and a = –2919.24 AU for van Arsdale. Integrating the orbits backwards indicate that both comets were born in the far Oort cloud. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
One of the two planetary cornerstone missions of the European Space Agency is the Rosetta mission to comet 67P/Churyumov-Gerasimenko. Rosetta is a rendezvous mission with a comet nucleus, which combines an Orbiter with a Lander. It will monitor the evolution of the comet nucleus and the coma as a function of increasing and decreasing solar flux input along the comet’s pre- and post-perihelion orbit. Different instrumentations will be used in parallel, from multi-wavelength spectrometry to in-situ measurements of coma and nucleus composition and physical properties. Rosetta will go in orbit around the nucleus of its target comet 67P/Churyumov-Gerasimenko, when it is still far from the Sun and accompany the comet along its way to perihelion and beyond. In addition the Rosetta Lander Philae will land on the nucleus surface, before the comet is too active to permit such a landing (i.e. at around r = 3 AU) and examine the surface and subsurface composition of the comet nucleus as well as its physical properties.  相似文献   

6.
We consider a model of the in situ Oort cloud which is isotropic with a random distrihution of perihelia directions and angular momenta. The energy distribution adopted has a continuous range of values appropriate for long-period (>200 yr) comets. Only the tidal torque of the Galaxy is included as a perturbation of comet orbits and it is approximated to be that due to a quasi-steady state distribution of matter with disk-like symmetry. The time evolution of all orbital elements can be analytically obtained for this case. In particular, the change in the perihelion distance per orbit and its dependence on other orbital elements is readily found. We further make the assumption that a comet whose perihelion distance was beyond 15 AU during its last passage through the Solar System would have orbit parameters that are essentially unchanged by planetary perturbations. Conversely, if the prior passage was inside 15 AU we assume that planetary perturbations would have removed the comet from the in situ energy distribution accessible by the galactic tide. Comets which had their perihelia changed from beyond 15 AU to within 5 AU in a single orbit are taken to be observable. We are able to track the evolution of 106 comets as they are made observable by the galactic tidal touque. Detailed results are obtained for the predicted distribution of new (0 < 1/ < 10–4 AU–1) comets. Further, correlations between orbital elements can be studied. We present predictions of observed distributions and compare them with the random in situ results as well as with the actual observed distributions of class I comets. The predictions are in reasonable agreement with actual observations and, in many cases, are significantly different from random when perihelia directions are separated into galactic northern and southern hemispheres. However the well-known asymmetry in the north-south populations of perihelia remains to be explained. Such an asymmetry is consistent with the dominance of tidal torques today if a major stochastic event produced it in the past since tidal torques are unable to cause the migration of perihelia across the latitude barriers ±26°.6 in the disk model.  相似文献   

7.
Comet C/ 1857 D1 (d'Arrest) is one of a large number of comets with parabolic orbits. Given that there are sufficient observations of the comet, 299 in right ascension and 279 in declination, it proves possible to calculate a better orbit. The calculations are based on a 12th order predictor‐corrector method. The comet's orbit is highly elliptical, e = 0.99982 and, from calculated mean errors, statistically different from a parabola. The comet will not return for at least 44000 years and thus represents no immediate NEO threat (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

9.
The perturbed motion of comet Halley and comet Mackholz 1 1986 VIII was investigated within a time interval of about 20 millennia. The minimal distance of 0.043 AU between P/Halley and Venus may occur on April 4, 4868 AD. The distance of 0.036 AU between P/Halley and Jupiter will take place on April 1, 6616 AD. The orbit of P/Machholz 1 crosses the orbits of Mercury and Venus eight times, that of the Earth six or eight times, and the orbit of Mars four times per a period of advance of the argument of perihelion. A distance of about 0.06 AU between P/Machholz 1 and the Earth may take place in August 2576 AD and 5751 AD and in February 4770 AD. The minimal comet-Earth distance of 0.035 AU occurs on September 14, 5971 AD. The closest encounter between P/Machholz 1 and Jupiter at the distance of 0.098 AU may be in May 4499 AD. These results may be considered as a forecast of possible collisions.  相似文献   

10.
The perturbed motion of comet Halley and comet Mackholz 1 1986 VIII was investigated within a time interval of about 20 millennia. The minimal distance of 0.043 AU between P/Halley and Venus may occur on April 4, 4868 AD. The distance of 0.036 AU between P/Halley and Jupiter will take place on April 1, 6616 AD.The orbit of P/Machholz 1 crosses the orbits of Mercury and Venus eight times, that of the Earth six or eight times, and the orbit of Mars four times per a period of advance of the argument of perihelion. A distance of about 0.06 AU between P/Machholz 1 and the Earth may take place in August 2576 AD and 5751 AD and in February 4770 AD. The minimal comet-Earth distance of 0.035 AU occurs on September 14, 5971 AD. The closest encounter between P/Machholz 1 and Jupiter at the distance of 0.098 AU may be in May 4499 AD. These results may be considered as a forecast of possible collisions.  相似文献   

11.
Comet outburst activity and the structure of solar wind streams were compared on the basis of Pioneer 10, 11, Vela 3 and IMP 7, 8 measurements at the heliocentric distance r ≈ 1–6 AU. It is shown that the solar wind velocity waves which are evolving into corotating shock waves beyond the Earth orbit may be responsible for comet outburst activity. The correlation between variations of comet outburst activity with heliocentric distance and the behavior of the solar wind velocity waves is established. The closeness of the characteristic times for the velocity waves and comet outburst activity (7–8 days at r = 1 AU) as well as the simultaneous growth of both the characteristic times with r are noted. The observed distribution of the comet outburst activity parameters during the 11-year cycle is also in good agreement with the phase distributions during the 11-year cycle of variations of the coronal hole areas and the rate of change of the sunspot area δS p.  相似文献   

12.
Comet Grigg–Skjellerup must return to its perihelion on November 29, 2002. Before that, it will pass by Jupiter at a distance of 0.5 AU. A simulation of the meteor swarm that is related to this comet in origin has been made for 19 perihelia since 1907. Particles ejected from the nucleus at velocities ±40 m/s in the direction perpendicular to its radius vector are concentrated around the comet and do not approach the Earth, while for particles ejected at velocities ±60 m/s, conditions for the encounter with Jupiter are different; they approach Jupiter to a distance of 0.1 AU, then pass near the Earth's orbit at a distance of 0.01 AU. However, these particles have substantially different radiant coordinates and hardly form a flow of sufficient density.  相似文献   

13.
The object P/2010 TO20 LINEAR-Grauer, discovered at a heliocentric distance of over 5 AU, and at first classified as a Trojan, is now believed to be a comet. This paper reports special observations of the object that have allowed a significant refinement of its orbit and investigation of its dynamic evolution. It is shown that P/2010 TO20 LINEAR-Grauer is not a Trojan yet demonstrates unusual dynamic features. In particular, the object moves in a temporary satellite orbit relative to Jupiter over the observation interval. The comet has been in the Hill sphere for about two years and has made one revolution around the planet. The jovicentric distance function has two minima, and the smallest distance is 0.075 AU. Our estimates show that, with a probability of 0.76, the comet is likely to move in a Jupiter family orbit with a perihelion distance of less than 2.5 AU. The average time for such a transition is around forty thousand years.  相似文献   

14.
Biele  Jens 《Earth, Moon, and Planets》2002,90(1-4):445-458
As a part of ESA's cornerstone mission ``ROSETTA' to comet 46P/Wirtanen a 100 kgLander will bring a scientific payload of almost 27 kg to the surface of the nucleus.After a first scientific sequence it will operate for a considerable fraction of thecometary orbit around the sun (between 3 AU and 2 AU). Ten experiments with a number of sub-experiments are foreseen; this paper presents the current status of the Lander development and reviews the scientific capabilities of each of the experiments at a time when the Flight Model (FM) of the Lander is already delivered.  相似文献   

15.
D.K. Yeomans 《Icarus》1981,47(3):492-499
The distribution of dust surrounding periodic comet Tempel-Tuttle has been mapped by analyzing the associated Leonid meteor shower data over the 902–1969 interval. The majority of dust ejected from the parent comet evolves to a position lagging the comet and outside the comet's orbit. The outgassing and dust ejection required to explain the parent comet's deviation from pure gravitational motion would preferentially place dust in a position leading the comet and inside the comet's orbit. Hence it appears that radiation pressure and planetary perturbations, rather than ejection processes, control the dynamic evolution of the Leonid particles. Significant Leonid meteor showers are possible roughly 2500 days before or after the parent comet reaches perihelion but only if the comet passes closer than 0.025 AU inside or 0.010 AU outside the Earth's orbit. Although the conditions in 1998–1999 are optimum for a significant Leonid meteor shower, the event is not certain because the dust particle distribution near the comet is far from uniform. As a by-product of this study, the orbit of comet Tempel-Tuttle has been redetermined for the 1366–1966 observed interval.  相似文献   

16.
An analysis is presented for the photometric data on comet C/2013 A1 (Siding Spring) from observations at a large heliocentric distance (~4.1 AU). Comet C/2013 A1 (Siding Spring) displays intense activity despite the relatively large heliocentric distance. The morphology of the comet’s coma is analyzed. The following parameters are measured: the color indices V-R, the normalized spectral gradient of the reflectivity of the comet’s dust S', and the dust production rate Afρ. A numerical simulation is performed for the evolution of the comet’s orbit after a close encounter with Mars. The most probable values are obtained for the Keplerian orbital elements of the comet over a hundred-year period. The comet’s orbit remains nearly parabolic after passing the orbits of all the Solar System planets.  相似文献   

17.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

18.
《Icarus》1986,65(1):1-12
The tidal gravitational field of the Galaxy directed into the galactic plane changes the angular momentum of comets in the Oort cloud. For comet orbits with semimajor axis greater than 2 × 104 AU, the change of angular momentum in one orbit is sufficient to bring comets from the Oort cloud into the visible region, causing the infall of “new” comets. The limiting size orbit is weakly dependent on the angle between the major axis of the comet orbit and the galactic plane. The flux of comets into the inner Solar System caused by the galactic tidal field will be continuous and nearly isotropic. This effect appears to exclude any determination of the trajectories of passing stars by analysis of the angular distribution of new comets. The production of intense comet showers by the tidal field of a solar companion or of an interstellar cloud is considered. We show that the direction of a solar companion cannot be found from the present distribution of observable comets. The frequency of comet showers induced by encounters with interstellar clouds is found to be much lower than that from passing stars, and the tidal fields of interstellar clouds are not strong enough to cause comet showers of sufficient intensity to result in Earth impacts.  相似文献   

19.
A period study of the young binary AR Aur based on the extensive series of published photoelectric/ccd minima times indicates the cyclic (OC) variation for the system. This continuous oscillatory variation covers almost three cycles, about 6000 orbital periods, by the present observational data. It can be attributed to the light‐time effect due to a third body with a period of 23.68 ± 0.17 years in the system. The analysis yields a light‐time semi‐amplitude of 0.0084 ± 0.0002 day and an orbital eccentricity of 0.20 ± 0.04. Adopting the total mass of AR Aur, the mass of the third body assumed in the co‐planar orbit with the binary is M3 = 0.54 ± 0.03 M and the semimajor axis of its orbit is a3 = 13.0 + 0.2 AU. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
《Icarus》1987,70(2):269-288
We simulate the Oort comet cloud to study the rate and properties of new comets and the intensity and frequency of comet showers. An ensemble of ∼106 comets is perturbed at random times by a population of main sequence stars and white dwarfs that is described by the Bahcall-Soneira Galaxy model. A cloning procedure allows us to model a large ensemble of comets efficiently, without wasting computer time following a large number of low eccentricity orbits. For comets at semimajor axis a = 20,000 AU, about every 100 myr a star with mass in the range 1M−2M passes within ∼10,000 AU of the Sun and triggers a shower that enhances the flux of new comets by more than a factor of 10. The time-integrated flux is dominated by the showers for comets with semimajor axes less than ∼30,000 AU. For semimajor axes greater than ∼30,000 AU the comet loss rate is roughly constant and strong showers do not occur. In some of our simulations, comets are also perturbed by the Galactic tidal field. The inclusion of tidal effects increases the loss rate of comets with semimajor axes between 10,000 and 20,000 AU by about a factor of 4. Thus the Galactic tide, rather than individual stellar perturbations, is the dominant mechanism which drives the evolution of the Oort cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号