首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The interpretation of the strong 14C variation around AD 775 as one (or several) solar super‐flare(s) by, e.g., Usoskin et al. (2013) is based on alleged aurora sightings in the mid AD 770s in Europe: A red cross /crucifix in AD 773/4/6 from the Anglo‐Saxon Chronicle, inflamed shields in AD 776 (both listed in the aurora catalogue of Link 1962), and riders on white horses in AD 773 (newly proposed as aurora in Usoskin et al. 2013), the two latter from the Royal Frankish Annals. We discuss the reports about these three sightings in detail here. We can show that all three can be interpreted convincingly as halo displays: The red cross or crucifix is formed by the horizontal arc and a vertical pillar of light (either with the Sun during sunset or with the moon after sunset); the inflamed shields and the riders on white horses were both two mock suns, especially the latter narrated in form of a Christian adaptation of the antique dioscuri motive. While the latter event took place early in AD 774 (dated AD 773 in Usoskin et al. 2013), the two other sightings have tobe dated AD 776, i.e. anyway too late for being in connection with a 14C rise that started before AD 775. We also sketch the ideological background of those sightings and there were many similar reports throughout that time. In addition, we present a small drawing of a lunar halo display with horizontal arc and vertical pillar forming a cross for shortly later, namely AD 806 June 4, the night of full moon, also from the Anglo‐Saxon Chronicle; we also show historic observations of halo phenomena (mock suns and crosses) from G. Kirch and Hevelius – and a modern photograph. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Given that a strong 14C variation in AD 775 has recently been suggested to be due to the largest solar flare ever recorded in history, it is relevant to investigate whether celestial events observed around that time may have been aurorae, possibly even very strong aurorae, or otherwise related to the 14C variation (e.g. a suggested comet impact with Earth's atmosphere). We critically review several celestial observations from AD 757 to the end of the 770s, most of which were previously considered to be true, and in some cases, strong aurorae; we discuss in detail the East Asian records and their wording. We conclude that probably none among the events after AD 770 was actually an aurora, including the event in AD 776 Jan, which was misdated for AD 774 or 775; the observed white qi phenomenon that happened above the moon in the south‐east was most probably a halo effect near the full Moon – too late in any case to be related to the 14C variation in AD 774/5. There is another report of a similar (or identical) white qi phenomenon above the moon, reported just before a comet observation and dated to AD 776 Jan; the reported comet observed by the Chinese was misdated to AD 776, but actually sighted in AD 767. Our critical review of East Asian reports of aurorae circa AD 775 shows some very likely true Chinese auroral displays observed and reported for AD 762; there were also several events prior to AD 771 that may have been aurorae but are questionable. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present further considerations regarding the strong 14C variation in AD 774/5. For its cause, either a solar super‐flare or a short gamma‐ray burst were suggested. We show that all kinds of stellar or neutron star flares would be too weak for the observed energy input at Earth in AD 774/5. Even though Maehara et al. (2012) present two super‐flares with ∼1035 erg of presumably solar‐type stars, we would like to caution: These two stars are poorly studied and may well be close binaries, and/or having a M‐type dwarf companion, and/or may be much younger and/or much more magnetic than the Sun – in any such case, they might not be true solar analog stars. From the frequency of large stellar flares averaged over all stellar activity phases (maybe obtained only during grand activity maxima), one can derive (a limit of) the probability for a large solar flare at a random time of normal activity: We find the probability for one flare within 3000 years to be possibly as low as 0.3 to 0.008 considering the full 1σ error range. Given the energy estimate in Miyake et al. (2012) for the AD 774/5 event, it would need to be ∼2000 stronger than the Carrington event as solar super‐flare. If the AD 774/5 event as solar flare would be beamed (to an angle of only ∼24°), 100 times lower energy would be needed. A new AD 774/5 energy estimate by Usoskin et al. (2013) with a different carbon cycle model, yielding 4 ot 6 time lower 14C production, predicts 4–6 times less energy. If both reductions are applied, the AD 774/5 event would need to be only ∼4 times stronger than the Carrington event in 1859 (if both had similar spectra). However, neither 14C nor 10Be peaks were found around AD 1859. Hence, the AD 774/5 event (as solar flare) either was not beamed that strongly, and/or it would have been much more than 4‐6 times stronger than Carrington, and/or the lower energy estimate (Usoskin et al. 2013) is not correct, and/or such solar flares cannot form (enough) 14C and 10Be. The 1956 solar energetic particle event was followed by a small decrease in directly observed cosmic rays. We conclude that large solar super‐flares remain very unlikely as the cause for the 14C increase in AD 774/5. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A large variation in 14C around AD 775 has been considered to be caused by one or more solar super‐flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbakır in Turkey near the Turkish‐Syrian border), which were not only red, but also green‐yellow – being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super‐flares causing the 14C increase around AD 775: There are several reports about low‐ to mid‐latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi‐)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 – always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD ∼733 to ∼823, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles – reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked‐eye sunspots, we discuss two more Schwabe cycles until AD ∼844. The 14C record (from both Intcal and Miyake et al. 2013a) is anti‐correlated to auroral and sunspot activity, as expected from solar wind modulation of cosmic rays which produce the radiocarbon. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present two Arabic texts of historic observations of supernova SN 1006 from Yemen as reported by al‐Yamānī and Ibn al‐Daybac (14th to 16th century AD). An English translation of the report by the latter was given before (Stephenson & Green 2002), but the original Arabic text was not yet published. In addition, we present for the first time the earlier report, also from Yemen, namely by al‐Yamānī in its original Arabic and with our English translation. It is quite obvious that the report by Ibn al‐Daybac is based on the report by al‐Yamānī(or a common source), but the earlier report by al‐Yamānī is more detailed and in better (Arabic) language. We discuss in detail the dating of these observations. The most striking difference to other reports about SN 1006 is the apparent early discovery in Yemen in the evening of 15th of Rajab of the year 396h (i.e. AD 1006 April 17±2 on the Julian calendar), as reported by both al‐Yamānī and Ibn al‐Daybac, i.e. ∼1.5 weeks earlier than the otherwise earliest known reports. We also briefly discuss other information from the Yemeni reports on brightness, light curve, duration of visibility, location, stationarity, and color. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The extended period of mass extinctions around the K/T boundary correlating with extraterrestrial amino acids in the sediment record constitutes strong evidence of a cometary cause. The input of extraterrestrial matter over 105 yr supports the hypothesis of a giant comet, fragmented into subcomets on close encounter with Jupiter, and subsequently perturbed into Earth-crossing orbits. Copious amounts of dust were emitted via this and possibly successive fragmenting encounters, and via normal cometary evaporation. The dynamics of dust from the disintegrating comet fragments favours retention in Earth-crossing orbits of the sub-micron fraction of organic composition. The shroud of dust accreted in the Earth's upper atmosphere varied with time and imposed climatic stresses that caused species extinctions over 105 yr. While the iridium peak in the sediments coincides with the Chicxulub crater impactor, other iridium detail suggests that some of the impactor material was reinjected into space and in part re-accreted by Earth from the interplanetary orbits.  相似文献   

7.
We present a computer model calculation for the racemization of a possible excess of amino acids in the icy fraction of comet nuclei bring about by ionizing radiation released during the decay of26Al,40K,235U,238U and232Th. The model takes into account a total of 110 chemical reactions, of which 91 are needed to explain the radiation chemical processing of the major constituents of comet nuclei (Navarro-Gonzálezet al., 1992) and 19 are necessary to simulate the radiolysis of glycine/alanine mixtures in aqueous solutions (Navarro-Gonzálezet al., 1994 and 1996). It is predicted that an enantiomeric excess of alanine would not be destroyed by radioracemization during the decay of embedded radionuclides. Nevertheless, this enantiomeric excess could be attenuated by the formation of racemic amino acids in the interior of comet nuclei as a result of the radiation-induced polymerization of HCN.  相似文献   

8.
We report the identification of gas jets in comet Hale-Bopp in OH, NH, CN, C2 and C3. This is the first time OH and NH jets without an obvious optical dust jet counterpart have been identified in narrowband comet images. We also confirm the existence of CN jets as reported by Larson et al. (1997) and Mueller et al. (1998). Jet features can be seen in the March and April 1997 datasets, approximately a month before and after perihelion. Our results contribute to the understanding of both the chemical properties of the comet as well as the physical mechanisms necessary to produce these features. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Abstract— Asteroids tens to hundreds of meters in diameter constitute the most immediate impact hazard to human populations, yet the rate at which they arrive at Earth's surface is poorly known. Astronomic observations are still incomplete in this size range; impactors are subjected to disruption in Earth's atmosphere, and unlike the Moon, small craters on Earth are rapidly eroded. In this paper, we first model the atmospheric behavior of iron and stony bodies over the mass range 1–1012 kg (size range 6 cm‐1 km) taking into account deceleration, ablation, and fragmentation. Previous models in meteoritics deal with rather small masses (<105–106 kg) with the aim of interpreting registered fireballs in atmosphere, or with substantially larger objects without taking into account asteroid disruption to model cratering processes. A few earlier attempts to model terrestrial crater strewn fields did not take into account possible cascade fragmentation. We have performed large numbers of simulations in a wide mass range, using both the earlier “pancake” models and also the separated fragments model to develop a statistical picture of atmosphere‐bolide interaction for both iron and stony impactors with initial diameters up to ?1 km. Second, using a compilation of data for the flux at the upper atmosphere, we have derived a cumulative size‐frequency distribution (SFD) for upper atmosphere impactors. This curve is a close fit to virtually all of the upper atmosphere data over 16 orders of magnitude. Third, we have applied our model results to scale the upper atmosphere curve to a flux at the Earth's surface, elucidating the impact rate of objects <1 km diameter on Earth. We find that iron meteorites >5 times 104 kg (2.5 m) arrive at the Earth's surface approximately once every 50 years. Iron bodies a few meters in diameter (105–106 kg), which form craters ?100 m in diameter, will strike the Earth's land area every 500 years. Larger bodies will form craters 0.5 km in diameter every 20,000 years, and craters 1 km in diameter will be formed on the Earth's land area every 50,000 years. Tunguska events (low‐level atmospheric disruption of stony bolides >108 kg) may occur every 500 years. Bodies capable of producing hazardous tsunami (?200 m diameter projectiles) should strike the Earth's surface every ?100,000 years. This data also allows us to assess the completeness of the terrestrial crater record for a given area over a given time interval.  相似文献   

10.
Transit light curve of KIC012557548b which is best represented by an exoplanet with a comet‐like tail (see Z. Garai et al., this issue, p. 1018). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The observational determination of coma outflow velocity for gaseous species is fairly straightforward using high-resolution spectroscopy. The determination of the outflow speed of the dust is much more difficult. Most sources cite Bobrovnikoff (1954). This brief report is not a strictly refereed publication, however, and mixes data from different comets.We present here a simple analysis of some data from the International Halley Watch (IHW) archive. Differences between continuum images from successive nights show dust jets and shells clearly. Their motion is apparent to first order from the edges of the features. The component of the dust outflow velocity perpendicular to the observer's line of sight may thus be determined. This is of course a lower limit on the dust outflow velocity. Many measurements, at different heliocentric distances (R), allow determination of the heliocentric dependence of the dust outflow velocity.We find that the dust outflow velocity in comet P/Halley varied as R –0.41 . If data from an outburst at 14 AU (Sekanina et al. 1992) is included in the fit, this dependence becomes R –0.55. This confirms the canonical (e.g. Delsemme 1982) inverse-square-root law, and supports the conclusion of Storrs et al. (1992) on the variability of cometary gas-to-dust ratios.Space Telescope Science Institute  相似文献   

12.
The observational determination of coma outflow velocity for gaseous species is fairly straightforward using high-resolution spectroscopy. The determination of the outflow speed of the dust is much more difficult. Most sources cite Bobrovnikoff (1954). This brief report is not a strictly refereed publication, however, and mixes data from different comets. We present here a simple analysis of some data from the International Halley Watch (IHW) archive. Differences between continuum images from successive nights show dust jets and shells clearly. Their motion is apparent to first order from the edges of the features. The component of the dust outflow velocity perpendicular to the observer's line of sight may thus be determined. This is of course a lower limit on the dust outflow velocity. Many measurements, at different heliocentric distances (R), allow determination of the heliocentric dependence of the dust outflow velocity. We find that the dust outflow velocity in comet P/Halley varied as R ?0.41 . If data from an outburst at 14 AU (Sekanina et al. 1992) is included in the fit, this dependence becomes R ?0.55. This confirms the canonical (e.g. Delsemme 1982) inverse-square-root law, and supports the conclusion of Storrs et al. (1992) on the variability of cometary gas-to-dust ratios.  相似文献   

13.
Abstract— We report on two surveys conducted during the times of Perseid shower maximum in 1997 and 1998. The first survey entailed the video monitoring of the Moon's disk with the intent of recording the optical flashes that should result when large meteoroids strike the lunar surface. The second survey consisted of a combination video camera and very low frequency (VLF) radiowave receiver system capable of detecting electrophonic meteors during their ablation in the Earth's atmosphere. Using standard ablation theory, we find that for a Perseid meteoroid to be capable of generating electrophonic sounds, it must have an initial mass in excess of 495 kg. We also find, as a result of the surveys, an upper limit of 2 × 10?17 m?2 s?1 to the flux of electrophonic Perseid meteors entering the Earth's atmosphere. Although our study indicates that large, meter-sized meteoroids must, at best, be sparsely distributed within the Perseid stream, we briefly discuss some tantalizing lines of evidence, found from within the astronomical literature, that hint at their true existence.  相似文献   

14.
A prominent feature of Titan's atmosphere is a thick haze region that acts as the end product of hydrocarbon and nitrile chemistry. Using a one-dimensional photochemical model, an investigation into the chemical mechanisms responsible for the formation of this haze region is conducted. The model derives profiles for Titan's atmospheric constituents that are consistent with observations. Included is an updated benzene profile that matches more closely with—recent ISO observations (Icarus 161 (2003) 383), replacing the profile given in the benzene study of Wilson et al. (J. Geophys. Res. 108 (2003) 5014). Using these profiles, pathways from polyynes, aromatics, and nitriles are considered, as well as possible copolymerization among the pathways. The model demonstrates that the growth of polycyclic aromatic hydrocarbons throughout the lower stratosphere plays an important role in furnishing the main haze layer, with nitriles playing a secondary role. The peak chemical production of haze layer ranges from 140 to 300 km peaking at an altitude of 220 km, with a production rate of 3.2×10−14 gcm−2 s−1. Possible mechanisms for polymerization and copolymerization and suggestions for further kinetic study are discussed, along with the implications for the distribution of haze in Titan's atmosphere.  相似文献   

15.
Abstract— Arguments in favor of the cometary origin of the Tunguska meteorite are adduced along with reasons against the asteroidal hypothesis. A critical analysis is given for the hypotheses by Sekanina (1983) and Chyba et al. (1993). On the basis of the azimuth and inclination of the trajectory of the Tunguska body with plausible values of the geocentric velocity, the semimajor axis of the orbit and its inclination to the ecliptic plane are calculated for this body. It is noted that the theory of the disintegration of large bodies in the atmosphere put forward by Chyba et al. (1993) is crude. Applying more accurate theories (Grigoryan, 1979; Hills and Goda, 1993) as well as taking into account the realistic shape of the body yield for the cometary body lower disruption heights than obtained by Chyba et al. Numerical simulations carried out by Svettsov et al. agree well with the cometary hypothesis and the analytical calculations based on Grigoryan's theory. The asteroidal hypothesis is shown not to be tenable: the complete lack of stony fragments in the region of the catastrophe, cosmochemical data (in particular, the results of an isotope analysis), and some other information contradict this hypothesis. It is shown that stony fragments that would have originated in the explosive disruption of the Tunguska body would not be vaporized by the radiation of the vapor cloud nor as a result of their fall to the Earth's surface.  相似文献   

16.
Abstract— The Peekskill H6 meteorite fell on 1992 October 9. We report extensive measurements of cosmic-ray produced stable nuclides of He, Ne, and Ar, of the radionuclides 22Na, 60Co, 14C, 36Cl, 26Al, and 10Be, and of cosmic-ray track densities. After correction for shielding via the 22Ne/21Ne ratio, the concentrations of cosmic-ray produced 3He, 21Ne and 38Ar give an average exposure age of 25 Ma, which is considered to be a lower limit on the true value. The 10Be/21Ne age is 32 Ma and falls onto a peak in the H-chondrite exposure age distribution. The activities of 26Al, 14C, 36Cl, and 10Be are all close to the maximum values expected for H-chondrites. Together with cosmic-ray track densities and the 22Ne/21Ne ratio, these radionuclide data place the samples at a depth >20 cm in a meteoroid with a radius >40 cm. In contrast, the 60Co activity requires a near-surface location and/or a much smaller body. Calculations show that a flattened geometry for the Peekskill meteoroid does not explain the observations in the context of a one-stage irradiation. A two-stage model can account for the data. We estimate an upper bound of 70 cm on the radius of the earlier stage of irradiation and conclude that Peekskill's radius was <70 cm when it entered the Earth's atmosphere. This size limit is somewhat smaller than the dynamic determinations (Brown et al., 1994).  相似文献   

17.
Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80–100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05–0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979–21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is attained in the key 14N15N absorption bands located between 85 and 90 nm at altitudes ∼1100–1600 km above Pluto’s surface. Additionally, an 14N15N isotope absorption depth ∼4–15% is predicted for observations obtained at these altitudes at a spectral resolution of ∼0.2–0.3 nm, if the N2 isotopologue 15N/14N percent ratio is comparable to the 0.37–0.6% ratio observed at Earth, Titan and Mars. If we presume that the predicted absorption depth must be at least 25% greater than the expected observational uncertainty, then it follows that a statistically significant detection of these signatures and constraint of the N2 isotopologue 14N/15N ratio within Pluto’s atmosphere will be possible if the attainable observational signal-to noise (S/N) ratio is ?9. The New Horizons (NH) Mission will be able to obtain high S/N, 0.27–0.35 nm full-width half-max 80–100 nm spectral observations of Pluto using the Alice spectrograph. Based on the NH/Alice specifications we have simulated 0.3 nm spectral resolution solar occultation spectra for the 1100–1600 km altitude range, assuming 30 s integration times. These simulations indicate that NH/Alice will obtain spectral observations within this altitude range with a S/N ratio ∼25–50, and should be able to reliably detect the 14N15N gas absorption signature between 85 and 90 nm if the 14N15N concentration is ∼0.3% or greater. This, additionally, implies that the non-detection of the 14N15N species in the 1100–1600 km range by NH/Alice may be used to reliably establish an upper limit to the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere. Similar results may be derived from 0.2 to 0.3 nm spectral resolution observations of any other N2-rich Solar System or exoplanet atmosphere, provided the observations are attained with similar S/N levels.  相似文献   

18.
We have used the spectra obtained by the Composite Infrared Spectrometer (CIRS) onboard the Cassini spacecraft to search for latitudinal variation in the 15N/14N ratio on Jupiter. We found no variations statistically significant given the observational and model uncertainties. The absence of latitudinal variations demonstrates that 15NH3 is not fractionated in Jupiter's atmosphere, and that the measured 15N/14N represents Jupiter's global value. Our mean value for the global jovian 15N/14N ratio of (2.22±0.52)×10−3 agrees with previous measurements made by Fouchet et al. (2000, Icarus 143, 223-243) and Owen et al. (2001, Astrophys. J. 553, L77-L79). We argue that the jovian isotopic 15N/14N ratio must represent the solar nitrogen isotopic composition. The solar 15N/14N ratio hence significantly differs from the terrestrial value: (15N/14N)=3.68×10−3. This supports the proposition that terrestrial nitrogen originates from a nitrogen reservoir isolated from the main nitrogen reservoir in the proto-solar nebula. The origin and carrier of this isolated reservoir are still unknown.  相似文献   

19.
This paper analyzes data on thermal explosions of large meteoroids in the earth’s atmosphere. The cumulative function of flux of space bodies is corrected with regard to the explosion height, which is determined, according to our approach, by maximum braking. As a result, the integral function of flux in the work [Brown, P., Spalding, R.E., ReVelle, D.O., et al., The Flux of Small Near-Earth Objects Colliding with the Earth, Nature, 2002, vol. 420, pp. 314–316] is consistent with the one we derived earlier. It is found that at least one phenomenon of those discussed in the paper by Brown et al. is a result of explosion of a comet nucleus fragment. It is shown that the Tunguska phenomenon cannot be explained within a monolithic body model.  相似文献   

20.
Fourteen years (November 16, 1978 through January 24, 1993) of Nimbus-7 total solar irradiance measurements have been made. The measured mean annual solar energy just outside of the Earth's atmosphere was about 0.1% (1.4 W/m2) higher in the peak years of 1979 (cycle 21) and 1991 (cycle 22) than in the quiet Sun years of 1985/86. Comparison with shorter, independent solar measurement sets and with empirical models qualitatively confirms the Nimbus-7 results. But these comparisons also raise questions of detail for future studies: in which years did the peaks actually occur and just how accurate are the models and the measurements?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号