首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experimental studies have reported the existence of two new Sb sulfide species, Sb2S52− and Sb2S62−, in alkaline sulfidic solutions in equilibrium with stibnite, Sb2S3, and orthorhombic S. These species contain Sb(V), which has also recently been identified in similar solutions using EXAFS by other researchers. This represents a significant change from the consensus a decade ago that sulfidic solutions of Sb contained only Sb(III) species. I have calculated from first principles of quantum mechanics the energetics for the oxidation of the Sb(III) sulfide dimer Sb2S42− to the mixed Sb(III,V) dimer Sb2S52− and then to the all Sb(V) dimer, Sb2S62−. Gas-phase reaction energies have been evaluated using polarized valence double zeta effective core potential basis sets and Moller-Plesset second order treatments of electron correlation. All translational, rotational and vibrational contributions to the gas-phase reaction free energy have been calculated. Hydration energies have been obtained using the COSMO version of the self-consistent reaction field polarizable continuum method. Negative free energy changes are calculated for the oxidation of the dianion of the III,III dimer to the III,V dimer by both small polysulfides, like S4H, and elemental S, modeled as S8. For the further oxidation of the III,V dimer to the V,V dimer the reaction free energies are calculated to be close to zero. The partially protonated Sb III,III dimer monoanion HSb2S4 can also be oxidized, but the reaction is not so favorable as for the dianion. Comparison of the calculated aqueous deprotonation energies of H2Sb2S4, H2Sb2S5 and H2Sb2S6 and their dianions with values calculated for various oxyacids indicates that the III,V and V,V dimers will have pKa2 values <5, so that their dianions will be the dominant species in alkaline solutions. These results are thus consistent with the recent identification of Sb2S52− and Sb2S62− species. I have also calculated the Raman spectra of Sb2S52− and Sb2S62− to assist in their identification. The calculated vibrational frequencies of the III,V and V,V dimers are characteristically higher than those of the III,III dimer I previously studied. The III,V dimer may contribute shoulders to the Raman spectrum.  相似文献   

2.
Based on the synthesis of hydrogeochemical materials on Sb occurrence in carbonate and thermal waters and thermodynamic simulations, genetic analysis was conducted of the transformations of probable Sb migration species (particularly oxygen-bearing and sulfide ones), and their transformations were calculated depending on the main parameters of hydrogeochemical systems (\(P_{CO_2 } \), T, R/W, Eh, and pH). The oxygen 2HSbO 2 0 + 3H2S = Sb2S3 + 4H2O (2SbO 2 ? + 3HS? + 5H+ = Sb2S3 + 4H2O) and sulfide HSb2S 4 ? + H+ = Sb2S3 cr + H2S (Sb2S 4 2? + 2H+ = Sb2S3cr + H2S) models for the genesis of hydrogenic Sb2S3(cr) were simulated. Information on occurrences of carbonate and thermal waters in various regions worldwide was generalized, and the reasons were identified for the geochemical separation of As and Sb in carbonate and thermal waters. The causes and conditions of an increase in Sb concentrations in thermal waters were revealed, and Sb migration species in carbonate and thermal waters were identified for various parameters of hydrogeochemical systems. Variations in Sb speciation were demonstrated for hydrogeochemical systems depending on their boundary conditions (\(P_{CO_2 } \), T, and R/W). Models were outlined responsible for the precipitation of Sb2S3(cr) from carbonate and thermal waters.  相似文献   

3.
The crystal structure of stibnite [Sb2S3, Pnma, a=11.314(2), b=3.837(2), c=11.234(3) Å, V= 487.7(3) Å3 at 293 K] was refined in situ at 230, 173, and 128 K. It is a major characteristic of the structure that the Sb–S secondary bonds enclosing Sb 5s2 inert lone-pair electrons at 293 K are significantly shorter than the corresponding sum of the Sb and S van der Waals radii. Concerning the temperature dependence, although both the polyhedral volume and the cation eccentricity of the two SbS7 polyhedra exhibit continuous contractions with decreasing temperature, the sphericity values remain constant, indicating isotropic shrinkage. Consequently, the geometries of Sb 5s2 inert lone-pair electrons and ligand atoms remain unchanged at low temperatures. This is because the crystal structure of stibnite at low temperature induces contraction with attractive interactions, which is called the orbital overlap between Sb 5s2 inert lone-pair electrons and ligand orbitals to maintain the coordination environment. In this case, Sb 5s2 lone-pair electrons are not inert, but active. Such orbital overlaps of inert lone-electron pairs can provide a reasonable explanation for shorter secondary bonds and lower band gap energy of the binary compounds containing heavy elements such as Sb, Te, Pb, and Bi, which are key factors in tracing the origins of color, luster, and semiconductivity of their minerals or compounds.  相似文献   

4.
Arsenic and Antimony in Groundwater Flow Systems: A Comparative Study   总被引:3,自引:0,他引:3  
Arsenic (As) and antimony (Sb) concentrations and speciation were determined along flow paths in three groundwater flow systems, the Carrizo Sand aquifer in southeastern Texas, the Upper Floridan aquifer in south-central Florida, and the Aquia aquifer of coastal Maryland, and subsequently compared and contrasted. Previously reported hydrogeochemical parameters for all three aquifer were used to demonstrate how changes in oxidation–reduction conditions and solution chemistry along the flow paths in each of the aquifers affected the concentrations of As and Sb. Total Sb concentrations (SbT) of groundwaters from the Carrizo Sand aquifer range from 16 to 198 pmol kg−1; in the Upper Floridan aquifer, SbT concentrations range from 8.1 to 1,462 pmol kg−1; and for the Aquia aquifer, SbT concentrations range between 23 and 512 pmol kg−1. In each aquifer, As and Sb (except for the Carrizo Sand aquifer) concentrations are highest in the regions where Fe(III) reduction predominates and lower where SO4 reduction buffers redox conditions. Groundwater data and sequential analysis of the aquifer sediments indicate that reductive dissolution of Fe(III) oxides/oxyhydroxides and subsequent release of sorbed As and Sb are the principal mechanism by which these metalloids are mobilized. Increases in pH along the flow path in the Carrizo Sand and Aquia aquifer also likely promote desorption of As and Sb from mineral surfaces, whereas pyrite oxidation mobilizes As and Sb within oxic groundwaters from the recharge zone of the Upper Floridan aquifer. Both metalloids are subsequently removed from solution by readsorption and/or coprecipitation onto Fe(III) oxides/oxyhydroxides and mixed Fe(II)/Fe(III) oxides, clay minerals, and pyrite. Speciation modeling using measured and computed Eh values predicts that Sb(III) predominate in Carrizo Sand and Upper Floridan aquifer groundwaters, occurring as the Sb(OH)30 species in solution. In oxic groundwaters from the recharge zones of these aquifers, the speciation model suggests that Sb(V) occurs as the negatively charged Sb(OH)6 species, whereas in sufidic groundwaters from both aquifers, the thioantimonite species, HSb2S4 and Sb2S4 2−, are predicted to be important dissolved forms of Sb. The measured As and Sb speciation in the Aquia aquifer indicates that As(III) and Sb(III) predominate. Comparison of the speciation model results based on measured Eh values, and those computed with the Fe(II)/Fe(III), S(-II)/SO4, As(III)/As(V), and Sb(III)/Sb(V) couples, to the analytically determined As and Sb speciation suggests that the Fe(II)/Fe(III), S(-II)/SO4 couples exert more control on the in situ redox condition of these groundwaters than either metalloid redox couple.  相似文献   

5.
Cu-poor meneghinite from La Lauzière Massif (Savoy, France) has the composition (electron microprobe) (in wt%): Pb 59.50, Sb 20.33, Bi 1.19, Cu 0.87, Ag 0.05, Fe 0.03, S 17.62, Se 0.05, Total 99.64. Its crystal structure (X-ray on a single crystal) was solved with R1=0.0506, wR2=0.1026, with an orthorhombic symmetry, space group Pnma, and a=24.080(5) Å, b=4.1276(8) Å, c=11.369(2) Å, V=1130.0(4) Å3, Z=4. Relatively to the model of Euler and Hellner (1960), this structure shows a significantly lower site occupancy factor for the tetrahedral Cu site (0.146 against 0.25). Among the five other metallic sites, Bi appears in the one with predominant Sb. Developed structural formula: Cu0.15Pb2(Pb0.53Sb0.47)(Pb0.46Sb0.54)(Sb0.75Pb0.19Bi0.06)S6; the reduced one: Cu0.58Pb12.72(Sb7.04Bi0.24)S24. The formation of such a Cu-poor variety seems to be related to specific paragenetic conditions (absence of coexisting galena), or to crystallochemical constraints (minor Bi). To cite this article: Y. Moëlo et al., C. R. Geoscience 334 (2002) 529–536.  相似文献   

6.
Fine-granular (<0.1 mm) flattened colorless transparent crystals of ivsite form white aggregates. The empirical formula (Na2.793Cu0.056)2.849HS2.016O8 is close to the ideal Na3H(SO4)2. The structure was refined up to R = 0.040. Ivsite has a monoclinic symmetry, P21/c, a = 8.655(1) Å, b = 9.652(1) Å, c = 9.147(1) Å, β = 108.76(1)°, V = 723.61(1) Å3, Z = 4. Na atoms occur at six- and seven-fold sites (NaO6 and NaO7); S atoms, in isolated SO4 tetrahedrons; these polyhedrons form a three-dimensional framework. The diagnostic lines of powder diffraction patterns (d[Å]–Ihkl) are 4.010–53–12-1, 3.949–87–012, 3.768–100–210, 3.610–21–20-2, 3.022–22–031, 2.891–42–22-2, 2.764–49–31-1, and 2.732–70–13-1.  相似文献   

7.
Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)3, As(SH)2S- and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides S n 2- , n = 2–6, the bisulfide anion, SH-, hydrogen sulfide, H2S and the sulfanes, S n H2, n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH- to H2S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S8 with SH- to produce the polysulfides, S n H-, n = 2–6. Our results are in excellent agreement with available experimental data, and support the existence of a S6 species.  相似文献   

8.
System As–Na–S–Cl–H–O was studied. The research was carried out in three stages: (1) selection of the most likely complexes resulting from arsenic sulfide dissolution, (2) calculation of their thermodynamic constants, and (3) comparison of calculated data with thermodynamic database obtained in tests with the solution of inverse thermodynamic problems using the Selektor program complex. The system As–Na–S–Cl–H–O included more than 230 dependent components, which were divided into two groups, base and functional. The former group includes components of the solution (NaCl, NaOH, Na2S, NaHS, HCl, H2S, H2SO4, sulfates, H2SO3, sulfites, thiosulfates, Na+, Cl,HS, S2−), gas phase (43 components), and solid phase (orpiment, red arsenic, arsenolite, claudetite, arsenic, sulfur, sodium salts). Thermodynamic constants of the base components are contained in the Selektor database (they were borrowed from reference-books). The latter group includes 77 complexes labile in the solution but determining the solubility of arsenic and stability of its solid phases. Physicochemical modeling was performed in H2S (≥0.01 m, pH = 1–10), Na2S, and NaHS solutions at 25–250 °C and saturated-vapor pressure. It has been established that the dissolution of arsenic sulfide mineral phases in subneutral and alkaline solutions at low oxidation potential is favored by the formation of sulfoarsenides, which are more stable than arsenides and arsenates. Thermodynamic constants of functional complexes determining the orpiment solubility were calculated within the experimental error. It is shown that in hydrothermal iron-free systems with a low oxidation potential, the concentration of As in the solution decreases on cooling and with acidity increase.  相似文献   

9.
Solubility of senarmontite (Sb2O3, cubic) in pure water and NaCl-HCl aqueous solutions, and local atomic structure around antimony in these fluids were characterized using in situ X-ray absorption fine structure (XAFS) spectroscopy at temperatures to 450 °C and pressures to 600 bars. These experiments were performed using a new X-ray cell which allows simultaneous measurement of the absolute concentration of the absorbing element in the fluid, and atomic environment around the absorber. Results show that aqueous Sb(III) speciation is dominated by the complex in pure water, mixed Sb-hydroxide-chloride complexes in acidic NaCl-HCl solutions (2 m NaCl-0.1 m HCl), and by Sb-chloride species in concentrated HCl solutions (3.5 m HCl). Interatomic Sb-O and Sb-Cl distances in these complexes range from 1.96 to 1.97 Å and from 2.37 to 2.47 Å, respectively. These structural data, together with senarmontite solubility determined from XAFS spectra, were complemented by batch-reactor measurements of senarmontite and stibnite (Sb2S3, rhombic) solubilities over a wide range of HCl and NaCl concentrations from 300 to 400 °C. Analysis of the whole dataset shows that Sb(III) speciation in high-temperature moderately acid (pH > 2-3) Cl-rich fluids is dominated by mixed hydroxy-chloride species like Sb(OH)2Cl° and Sb(OH)3Cl, but other species containing two or three Cl atoms appear at higher acidities and moderate temperatures (?300 °C). Calculations using stability constants retrieved in this study indicate that mixed hydroxy-chloride complexes control antimony transport in saline high-temperature ore fluids at acidic conditions. Such species allow for a more effective Sb partitioning into the vapor phase during boiling and vapor-brine separation processes occurring in magmatic-hydrothermal systems. Antimony hydroxy-chloride complexes are however minor in the neutral low- to moderate-temperature solutions (?250-300 °C) typical of Sb deposits formation; the antimony speciation in these systems is dominated by Sb(OH)3 and potentially Sb-sulfide species.  相似文献   

10.
The crystal structure of lisiguangite,CuPtBiS3,from Yanshan mountains,Chengde Prefecture,Hebei Province,China has been determined by single crystal X-ray diffraction.It belongs to orthorhombic space group P2_12_12_1 with a = 7.7372(15) A,b = 12.844(3) A,c = 4.9062(10) A,V =487.57(17) A~3,Z = 4.The final full-matric least-square refinement on F2 converged with Rl = 0.0495 and wR2 = 0.0992 for 704 observed reflections[I≥2σ(I)].Lisiguangite is the isomorph of known CuNiSbS_3 and CuNiBiS_3· Pt~(2+) and Bi~(3+) have the distorted octahedral coordination enviroments composed of two metal and four S and Cu~(+2) has a distorted tetrahedral coordination environment with four S atoms.Each S atom is surrounded by four metals to give a tetrahedral environment.The crystal structure is a complex 3 dimensional network.  相似文献   

11.
The results of an examination of vladimirivanovite, a new mineral of the sodalite group, found at the Tultui deposit in the Baikal region are discussed. The mineral occurs in the form of outer rims (0.01–3 mm thick) of lazurite, elongated segregations without faced crystals (0.2 to 3–4 mm in size; less frequently, 4 × 12–15 × 20 mm), and rare veinlets (up to 5 mm) hosted in calciphyre and marble. Vladimirivanovite is irregular and patchy dark blue. The mineral is brittle; on average, the microhardness VHN is 522–604, 575 kg/mm2; and the Mohs hardness is 5.0–5.5. The measured and calculated densities are 2.48(3) and 2.436 g/cm3, respectively. Vladimirivanovite is optically biaxial; 2V meas = 63(±1)°, 2V calc = 66.2°; the refractive indices are α = 1.502–1.507 (±0.002), N m = 1.509–1.514 (±0.002), and N g = 1.512–1.517 (±0.002). The chemical composition is as follows, wt %: 32.59 SiO2, 27.39 Al2O3, 7.66 CaO, 17.74 Na2O, 11.37 SO3, 1.94 S, 0.12 Cl, and 1.0 H2O; total is 99.62. The empirical formula calculated based on (Si + Al) = 12 with sulfide sulfur determined from the charge balance is Na6.36Ca1.52(Si6.03Al5.97)Σ12O23.99(SO4)1.58(S3)0.17(S2)0.08 · Cl0.04 · 0.62H2O; the idealized formula is Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O. The new mineral is orthorhombic, space group Pnaa; the unit-cell dimensions are a = 9.066, b = 12.851, c = 38.558 Å, V = 4492 Å3, and Z = 6. The strongest reflections in the X-ray powder diffraction pattern (dÅ—I[hkl]) are: 6.61–5[015], 6.43–11[020, 006], 3.71–100[119, 133], 2.623–30[20.12, 240], 2.273–6[04.12], 2.141–14[159, 13.15], 1.783–9[06.12, 04.18], and 1.606–6[080, 00.24]. The crystal structure has been solved with a single crystal. The mineral was named in memoriam of Vladimir Georgievich Ivanov (1947–2002), Russian mineralogist and geochemist. The type material of the mineral is deposited at the Mineralogical Museum of St. Petersburg State University, St. Petersburg, Russia.  相似文献   

12.
Pyrite dissolution in acidic media   总被引:2,自引:0,他引:2  
Oxidation of pyrite in aqueous solutions in contact with air (oxygen 20%) was studied at 25°C using short-term batch experiments. Fe2+ and SO42− were the only dissolved Fe and S species detected in these solutions. After a short period, R = [S]tot/[Fe]tot stabilized from 1.25 at pH = 1.5 to 1.6 at pH = 3. These R values were found to be consistent with previously published measurements (as calculated from the raw published data). This corresponds to a nonstoichiometric dissolution (R < 2) resulting from a deficit in aqueous sulfur. Thermodynamics indicate that S(−I) oxidation can only produce S(s)0 and SO42− under these equilibrium conditions. However, Pourbaix diagrams assuming the absence of SO42− indicate that S2O32− and S4O62− can appear in these conditions. Using these species the simplest expected oxidation mechanism is
  相似文献   

13.
The crystal structure of the rare secondary mineral cualstibite-1M (formerly cyanophyllite), originally reported to have the chemical formula 10CuO·2Al2O3·3Sb2O3·25H2O and orthorhombic symmetry, was solved from single-crystal intensity data (Mo- X-radiation, CCD area detector, 293 K, 2θmax?=?80) collected on a twinned crystal containing very minor Mg. The mineral is monoclinic, P21/c (no. 14), with a?=?9.938(1), b?=?8.890(1), c?=?5.493(1) Å, β?=?102.90(1)°, V?=?473.05(11) Å3; R1(F)?=?0.0326. All crystals investigated turned out to be non-merohedric twins. The atomic arrangement has a distinctly layered character. Brucite-like sheets composed of two [4?+?2]-coordinated (Cu,Al,Mg) sites are linked by weak hydrogen-bonding (O···O?~?2.80 Å) to isolated regular Sb(OH)6 octahedra (<Sb-O>?=?1.975 Å). The layered, pseudotrigonal character explains the perfect cleavage and the proneness to twinning. The Sb site is fully occupied and the two (Cu,Al,Mg) sites have occupancies of Cu0.79Al0.17Mg0.04 and Cu0.72Al0.23Mg0.05. The Cu-richer site shows a slightly stronger Jahn-Teller-distortion. The resulting empirical formula, which necessitates a H2O-for-OH substitution to obtain charge balance, is (Cu2.23Al0.63Mg0.14)(OH)5.63(H2O)0.37[Sb5+(OH)6]. The ideal chemical formula is (Cu,Al)3(OH)6[Sb5+(OH)6], with Cu:Al = 2:1. The structure is closely related to those of trigonal cualstibite-1T [Cu2AlSb(OH)12, P-3, with ordered Cu-Al distribution in the brucite sheets], and its Zn analogue zincalstibite-1T [Zn2AlSb(OH)12]. Cualstibite-1M and cualstibite-1T are polytypes and, together with zincalstibite-1T, zincalstibite-9R and omsite, belong to the cualstibite group within the hydrotalcite supergroup, which comprises all natural members of the large family of layered double hydroxides (LDH).  相似文献   

14.
In the oxidation zone of the Berezovskoe gold deposit in the middle Urals, Russia, minerals of the beudantite–segnitite series (idealized formulas PbFe3 3+ AsO4)(SO4)(OH)6 and PbFe3 3+ AsO4)(AsO3OH)(OH)6, respectively) form a multicomponent solid solution system with wide variations in the As, S, Fe, Cu, and Sb contents and less variable P, Cr, Zn, Pb, and contents K. The found minerals of this system correspond to series from beudantite with 1.25 S apfu to S-free segnitite, with segnitite lacking between 1.57 and 1.79 As apfu. Segnitite at the Berezovskoe deposit contains presumably pentavalent Sb (up to 15.2 wt % Sb2O5 = 0.76 Sb apfu, the highest Sb content in the alunite supergroup minerals), which replaces Fe3+. The Sb content increases with increasing As/S value. On the contrary, beudantite is free of or very poor in Sb (0.00–0.03 Sb apfu). Many samples of segnitite are enriched in Cu (up to 8.2 wt% CuO = 0.83 Cu apfu, uncommonly high Cu content for this mineral) and/or in Zn (up to 2.0 wt% ZnO = 0.19 Zn apfu). Both Cu and Zn replace Fe. The generalized formula of a hypothetic end member of the segnitite series with 1 Sb apfu is Pb(Fe3+ M 2+Sb5+)(AsO4)2(OH)6, where M = Cu, Zn, Fe2+. The chemical evolution of beudantite–segnitite series minerals at the Berezovskoe deposit is characterized by an increase in the S/As value with a decrease in the Sb content from early to late generations.  相似文献   

15.
The new mineral species edgarite, FeNb3S6, was discovered in a feldspar-rich fenite, in a fenitized xenolith enclosed by nepheline syenite of the Khibina alkaline complex, Kola Peninsula, northwestern Russia. It occurs as platy inclusions (up to 0.15?mm) in Ti-(V)-rich pyrrhotite and ferroan alabandite, and as dark gray aggregates of platy grains located on the surface of the pyrrhotite. The associated minerals include Ti-(V)-rich marcasite, Mn-Fe-rich wurtzite-2H, corundum, nearly end member phlogopite, rutile, monazite-(Ce), and a graphite-like material. Edgarite is soft (VHN5;10= 135–205?kg/mm2), distinctly bireflectant, and has a strong anisotropy. Its reflectance in air (and in oil) (R1 and R2 in percent, respectively) is: 470?nm: 28.1, 40.2 (13.0, 24.2), 546?nm: 27.4, 39.3 (12.3, 22.7), 589?nm: 27.0, 38.5 (12.2, 21.7), and 650?nm: 27.0, 36.9 (12.4, 20.3). The composition is Nb 52.87, Fe 10.12, V 0.36, Mn 0.10, Ti 0.04, S 35.86, sum 99.35?wt%, which corresponds to (Fe0.96V0.04Mn0.01)Σ1.01Nb3.03S5.95 (basis: Σ atoms=10). By analogy with synthetic FeNb3S6, the X-ray powder pattern of edgarite was indexed on a hexagonal cell, a=5.771(1), c=12.190(6)?Å, and V=351.6(3)?Å3, D calc is 4.99?g/cm3. The space group is most probably P6322, with Z=2. The strongest lines of the pattern [d in Å (I, hkl)] are: 6.11 (8, 002), 3.04 (6, 004), 2.88 (5, 110), 2.606 (8, 112), 2.096 (10, 114), 1.665 (8, 300), 1.524 (6, 008), 1.126 (7, 322), and 1.027 (6, 414). Edgarite appears to have formed at a very late or final stage of metasomatism, after the main event of fenitization, from a highly reduced, subalkaline S-C-H-rich fluid, which may have remobilized Nb as a result of destabilization of oxide minerals. These reducing conditions promoted the chalcophile behavior of lithophile elements (Nb, Ti, V and Mn) on a local scale in the fenite.  相似文献   

16.
Ferrovalleriite, ideally 2(Fe,Cu)S · 1.5Fe(OH)2, a layered hydroxide-sulfide of the valleriite group and an analog of valleriite with Fe instead of Mg in the hydroxide block, has been approved by the IMA Commission on New Minerals, Nomenclature and Classification as a valid mineral species. It was found in the Oktyabr’sky Mine, Noril’sk, Krasnoyarsk krai, Siberia, Russia. Ferrovalleriite occurs in cavities of massive sulfide ore mainly consisting of cubanite and mooihoekite. In different cases, it is associated with magnetite, Fe-rich chlorite-like phyllosilicate, ferrotochilinite, hibbingite, or rhodochrosite. Ferrovalleriite forms crystals flattened on [001] (from scaly to tabular; up to 5 mm across and up to 0.3 mm thick), typically split and curved. Occasionally, they are combined into aggregates up to 1.5 × 2 cm. Ferrovalleriite is dark bronze-colored, with a metallic luster and black streak. The Mohs’ hardness is ca. 1; VHN is 35 kg/mm2. Cleavage is perfect parallel to {001}, mica-like. Individuals are flexible and inelastic. D(calc) = 3.72 g/cm3. In reflected light, ferrovalleriite is pleochroic from yellowish to gray; bireflectance is moderate. Anisotropy is strong, with bluish gray to yellowish beige rotation colors. Reflectance values [R 1R 2 %, (λ, nm)] are: 15.6–16.6 (470), 14.8–20.5 (546), 14.7–22.3 (589), 14.5–24.1 (650). The IR spectrum shows the presence of (OH) groups bonded with Fe cations and the absence of H2O molecules. The chemical composition of the holotype (wt %; electron microprobe, H content is calculated) is as follows: 0.10 Al, 0.03 Mn, 45.31 Fe, 0.07 Ni, 18.29 Cu, 20.37 S, 15.62 O, 0.98 H, total is 100.77. The empirical formula calculated on the basis of 2 S atoms is: Al0.01Fe2.55Cu0.91S2(OH)3.07 = (Fe1.09Cu0.91)Σ2S2 · (Fe 1.34 2+ Fe 0.12 3+ Al0.01)Σ1.47(OH)3.07. The structure of ferrovalleriite is incommensurate (misfit); two sublattices are present: (1) sulfide sublattice, space group $R\bar 3m$ , R3m or R32; the unit-cell dimensions are: a = 3.792(2), c = 34.06(3) Å, V = 424(1) Å3 and (2) hydroxide sublattice, space group $P\bar 3m1$ , P3m1 or P321; the unit-cell dimensions: a = 3.202(3), c = 11.35(2)Å, V = 100.8(3) Å3. Together with this main polytype modification with three-layer (R-cell, Z = 3) sulfide block, the holotype ferrovalleriite contains the modification with one-layer (P-cell, Z = 1) sulfide block (sulfide sublattice with $P\bar 3m1$ , P3m1 or P321, unit cell dimensions: a = 3.789(4), c = 11.35(1) Å, V = 141(5) Å3). The strongest reflections in the X-ray powder pattern (d, Å-I) are: 5.69–100; 3.268–58; 3.163–36; 1.894–34; 1.871–45.  相似文献   

17.
The vertical distribution of reduced sulfur species (RSS including H2S/HS, S0, electroactive FeS) and dissolved Fe(II) was studied in the anoxic water column of meromictic Lake Pavin. Sulfide concentrations were determined by two different analytical techniques, i.e. spectophotometry (methylene blue technique) and voltammetry (HMDE electrode). Total sulfide concentrations determined with methylene blue method (∑H2SMBRS) were in the range from 0.6 µM to 16.7 µM and were substantially higher than total reduced sulfur species (RSSV) concentrations determined by voltammetry, which ranged from 0.1 to 5.6 μM. The observed difference in the sulfide concentrations between the two methods can be assigned to the presence of FeS colloidal species.Dissolved Fe was high (> 1000 µM), whereas dissolved Mn was only 25 µM, in the anoxic water column. This indicates that Fe is the dominant metal involved in sulfur redox cycling and precipitation. Consequently, in the anoxic deep layer of Lake Pavin, “free” sulfide, H2S/HS, was low; and about 80% of total sulfide detected was in the electroactive FeS colloidal form. IAP calculations showed that the Lake Pavin water column is saturated with respect to FeSam phase. The upper part of monimolimnion layer is characterized by higher concentrations of S(0) (up to 3.4 µM) in comparison to the bottom of the lake. This behavior is probably influenced by sulfide oxidation with Fe(III) oxyhydroxide species.  相似文献   

18.
A new phase of AlOOH (tentatively called δ-AlOOH) was synthesized at 21?GPa and 1000?°C and its crystal structure was identified by a powder X-ray diffraction method. Rietveld refinement revealed that this aluminum oxide hydroxide has an orthorhombic unit cell, a?=?4.7134(1) Å, b?=?4.2241(1) Å, c?=?2.83252(8) Å, V?=?56.395 (5) Å3, and Z?=?2 in the space group of P21?nm. A calculated density is 3.533?g?cm?3, which is about 4.48 and 15.04% denser than that of diaspore and boehmite, respectively. The δ-[Al0.86Mg0.07Si0.07]OOH is also stable at 21?GPa and 1000?°C, coexisting with majorite and phase egg, and its cell parameters are a?=?4.710(1) Å, b?=?4.215(1) Å, c?=?2.839(1) Å, and V?=?56.37(1) Å3.  相似文献   

19.
Antimony (Sb) emissions to the environment are increasing, and there is a dearth of knowledge regarding Sb fate and behavior in natural systems. In natural systems, the presence of competitive anions may compete with Sb for adsorption sites on mineral surfaces, hence increasing its potential bioavailability. Accordingly, the adsorption of Sb(III) on kaolinite was investigated in the presence of competitive anions. Kinetic studies suggest that adsorption reaction of Sb(III) on kaolinite is rapid initially and becoming slow after 12 h both in binary Sb(III)–kaolinite system and in ternary Sb(III)-competitive anion–kaolinite system. The presence of PO4 3? has a much stronger and more obvious promotive effect on the adsorption of Sb(III) on kaolinite compared with the other two anions. The adsorption data of Sb(III) on kaolinite in the absence and presence of competitive anions at three temperatures were successfully modeled using Langmuir (r 2 > 0.95) and Freundlich (r 2 > 0.95) isotherms. Accompanied the adsorption of Sb(III) on kaolinite, significant oxidation of Sb(III) to Sb(V) had occurred under the experimental conditions used in this study. The presence of kaolinite which has a larger specific surface area could increase the contact area between the adsorbed Sb(III) and oxygen in the bulk solution, which promoted the oxidation rate of Sb(III) to Sb(V).  相似文献   

20.
Rietveld refinement of X-ray synchrotron data was performed for two synthetic tetrahedrite samples, with 0.61 and 1.83 Fe atoms, and two synthetic tennantite samples with 0.10 and 1.23 Fe atoms p.f.u. M12(Sb,As)4S13. Measurements were performed at 25 and 250°C. For both the phases, increased Fe substitution is reflected in the increased tetrahedral ‘Cu1’–S distance (‘Cu1’ is a site of Fe substitution) and Cu2–S distances. Cu2 was refined as a split position; the Cu2–Cu2 split about the plane of the S12S2 triangle is about 0.56 and 0.65 Å for tetrahedrite and tennantite, respectively. Cu2–Cu2 distances in the structure cavity are 2.8–2.9 Å. Between 25 and 250°C, the lattice parameter a increased by 0.02–0.04 Å and the interatomic distances by 0.01 Å on an average. Thermal expansion coefficients of little-substituted samples are similar to those of unsubstituted samples, whereas thermal expansion appears to decrease with increasing substitution by Fe. The Cu2–Cu2 split increases at 250°C by about 0.1 Å for tetrahedrite and by more than 0.15 Å for tennantite but the cage expansion is minimal so that the Cu2–Cu2 distances in the cavity decrease with temperature. Difference Fourier maps indicate that there is little residual electron density left between the two Cu2 half-sites in tetrahedrite but this inter-site density is substantially higher in tennantite. It increases with temperature, especially in the little-substituted tennantite sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号