首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attempt has been made to delineate the hydrochemistry for a small island based on the major ions and heavy metal concentrations. In this investigation, six sampling campaigns were conducted to measure the concentrations of major ions (Ca, Mg, Na, K, HCO3, Cl, and SO4) and heavy metals (Zn, Cr, Pb, Mn, As, and Cu) in groundwater samples collected from seven sampling stations (boreholes) located on Kapas Island, Terengganu, Malaysia. The distribution of major ions is illustrated by a piper plot where Ca–HCO3 is the dominant type. In addition, the concentrations of heavy metals demonstrate that Mn shows as being the highest concentrated heavy metal in the groundwater sampled in the sampling campaigns; the average Mn content in groundwater sampled was 54.05 μg/L. However, a comparison of the heavy metal (Mn, Cr, Zn, As, Pb, and Cu) concentrations in groundwater samples with the Drinking Water Quality Standard prescribed by World Health Organization reveals that none of these heavy metals exceeded the recommended threshold limits. The principal component analyses (PCA) extracted four components that control the groundwater chemistry. Components 1 and 2 from the PCA analyses extracted approximately 52.11 % of the total variance, which represent the heavy metals (As and Mn) and physical parameters (pH, redox potential, electrical conductivity, temperature, and total dissolved solids). Based on the output of the PHREEQC hydrogeochemical software, several species of heavy metals exist, in which the dominant species found are Mn2+, PbCO3, Cu(OH)2, and Zn+.  相似文献   

2.
Runoff was collected from three different roofing materials that are commonly used for roofing in Ile-Ife, Nigeria, between the months of June to August, 2004. The samples were collected in four geographical locations in the town. The run offs were analysed for pH, Temp, TDS, CI?, S04 2?, PO4 3? N03 2?, EC and some heavy metals both as regards total, dissolved and particulate fractions. Analysis of the heavy metals was done using flame Atomic Absorption Spectrophotometer. The quantity of these parameters varies with the different roofing materials. In terms of dissolved metals, Fe is the most predominant metal with mean values 0.59 ± 0.29, 0.82 ± 0.14, and 1.04 ± 0.27 mg/L for asbestos, ceramic tiles and metal sheets respectively. The tendency of the roofing materials to release dissolved metals is arranged as follows: Zn, Cr and Fe (metal sheet > Ceramic > asbestos); Cd and Pb (asbestos > ceramic > metal sheet). In terms of particulate metals, the concentration of Cd and Pb are higher in the asbestos than other roofing stuffs. The sequence of their predominance in asbestos is as follows: Pb (0.83±0.55 mg/L) > Cd (0.29 ± 0.07 mg/L). In all the roofs, both particulate and dissolved metals except Zn exceeded WHO permissible limits for drinking water. The high levels of the metals obtained in this study may likely result in consumer complaints since some of the metals are not only carcinogenic but are also liable of impacting bad taste in water.  相似文献   

3.
This study highlights the distribution of hydraulic conductivity (K) in the regional aquiferous Ajali Formation of SE-Nigeria on one hand and assesses the possible influences of textural and geochemical characteristics on the hydraulic conductivity on the other hand. The investigation approach involved field sampling and collection of 12 sandstone samples from different outcrop locations, followed by laboratory studies such as grain-size analysis (GSA), constant head permeameter test and geochemical analysis of major and trace elements using X-ray fluorescence method. GSA and textural studies show that the sandstones range from fine to medium sands, constituting about <75–99% sand fraction, with graphic mean grain size of 0.23–0.53 mm. Other parameters such as coefficient of uniformity (Cu) range from 1.58 to 5.25 (av. 2.75), while standard deviation (sorting) values of 0.56Ø–1.24Ø imply moderately well sorted materials. In addition, the order of the estimated K values is Kpermeameter>KBeyer>KHazen>KKozeny-Carmen>KFair-Hatch with average values of 1.4×10?3, 4.4×10?4, 3.8×10?4, 2.2×10?4 and 8.1×10?5m/s, respectively. These values fall within the range of 10?5 and 10?3m/s for fine to medium sands. However, multivariate factor analysis of the data revealed significant positive dependence of the empirically determined K values on graphic mean grain size and percentage sand content and much less dependence on sorting and total porosity. Geochemical profiles of the fresh samples are dominated by quartz with corresponding SiO2 content of 76.1–98.2% (av. 89.7%) while other major oxides are generally below 1.0wt.% in the fresh samples. However, the ferruginized samples exhibited elevated concentrations of Al2O3 (3.50–11.60wt.%) and Fe2O3 (1.80–3.60wt.%), which are clear indications of weathering/ferruginization processes with attendant trace metal release/enrichment (2.5mg/l Cu, 7.5mg/l Pb, 6.5mg/l Zn, 3.9mg/l Ni and 19.6mg/l Cr) call for concern in respect of the chemical quality of the groundwater system. The associated groundwater is generally soft, slightly acidic, and with low dissolved solids (EC=14–134μs/cm) dominated by silica; implying water from clean sandy aquifer devoid of labile and weatherable minerals. Nonetheless, most of the metals (with exception of Si, Fe and Mn) exhibited higher degree of mobility (2–12 folds), which can be attributed to reduction of Fe-/Mn-oxyhydroxides as sinks/hosts for trace metals. Consequently, infiltration-induced geochemical reactions (redox, ferruginization and leaching processes) signify potential environmental impact in terms of groundwater quality as well as borehole/aquifer management, especially under humid tropical environment of the study area.  相似文献   

4.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

5.
《Applied Geochemistry》1999,14(6):719-734
The geochemistry of Mn and Fe in surface pools, pore-waters and surface peats and the sorption of Zn by the surface peats was contrasted among 15 peatlands sampled along a mineral-poor to mineral-rich fen gradient. Sorption of Zn by surficial peats was compared via distribution coefficients, both total (KDT) and partial (KDERMn, KDRFe and KDORG), where ER Mn, R Fe and ORG are amounts of Zn recovered from the easily reducible Mn oxides, reducible Fe oxides, and organic components of peat, respectively. Apparent stability constants (KAs) for Zn sorption onto oxides of Fe recovered from the surface peats were also calculated and compared along the same gradient. Peat geochemistry was peatland dependent; mineral-poor fens had less easily reducible Mn and greater amounts of organic matter (%Loss on Ignition; LOI) versus mineral-rich fens (range of 0.66–8.6 mm kg−1 for ER Mn and 20–88% LOI for organic matter). Reducible Fe also varied among peatlands (range 51–315 mm kg−1) but was independent of the mineral-poor to mineral-rich fen gradient. Comparison of partial KDs for amounts of Zn sorped onto the ER Mn, R Fe and ORG components of peat indicated that sorption was dominated by R Fe in all peatlands. KDTs ranged from 0.54–2.00. In contrast to other aquatic systems, however, the range in KDTs was not related to either surface or pore-water pH. KAs ranged from 0.36 to 3.06 and were also independent of surface or pore-water pH. However, average KAs (but not KDTs), were greater for mineral-poor fens (P<0.02), suggesting greater Zn binding by surface peats of mineral-poor fens versus either the moderately poor or mineral-rich peatlands. Other water chemistry variables, such as pore-water base cation concentrations, weakly correlated to Zn partitioning onto R Fe (r=−0.35, P=0.05), but did not fully explain differences in Zn partitioning among peatlands. Greater average KAs for the mineral-poor peatlands may in part be due to the presence of strong metal-organic matter-Fe oxide complexes in the Sphagnum dominated peatlands as well as lower pore-water base cation concentrations that occur in the mineral-poor peatland as compared to the more mineral-rich fens.  相似文献   

6.
Soils of loamy sand on weathered, sandy dolomite were cored from six holes up to 70 ft beneath a municipal waste landfill in central Pennsylvania. Mn, Fe, Ni, Co, Cu, Zn, Cd, Pb, and Ag were determined in exchangeable and non-exchangeable forms in total and < 15 μm soil samples. Most of these metals were bound in Mn oxides, non-exchangeable with 0.5 M CaCl2. The Mn oxides (often X-ray amorphous) identified when crystalline as todorokite occurred chiefly as coatings on quartz grains.Somewhat higher amounts of acid leachable trace metals were found in the < 15 μm size fraction than in the total soil samples; however, trace metal/Mn ratios were similar in both. In general, the initial mild soil leaching, which dissolved chiefly Mn oxides, gave MnFeX>Co>Ni>Pb>Zn> Cu>Cd>Ag. The final leaching, which dissolved chiefly ferric oxides, gave Fe>Mn>Ni>Zn>Co> Cu>Pb>Cd>Ag. Samples taken from an unpolluted site and from the same soils affected for seven years by leachate from the refuse had similar metal contents.Soil extractable Co, Ni, Cu, and Zn could be predicted from the Mn extracted. Based in part on factor analysis of the data, Mn-rich oxides had at least tenfold higher heavy metal percentages than Fe-rich oxides (crystalline component goethite), reflecting their greater coprecipitation potential. Because of this potential and because of the generally higher solubility of Mn than Fe oxides, more heavy metals may be released from Mn-rich than from Fe-rich soils by disposal of organic-bearing wastes. However, leaching of the moisture-unsaturated soils in situ is rarely severe enough to completely dissolve both Mn and Fe oxides. Based on the Mn content, Cd, Cu, and Pb were depleted in soil moisture beneath the landfill relative to their amounts in the soil. This depletion may reflect factors including heterogeneity in metal content of the soil oxides; preferential resorption of these metals; and removal of the Cd, Cu, and Pb as organic precipitates or as inorganic precipitates such as carbonates.  相似文献   

7.
Additions of the low occurrence stable isotopes 61Ni, 65Cu, and 68Zn were used as tracers to determine the exchange kinetics of metals between dissolved and particulate forms in laboratory studies of natural water and suspended sediments from South San Francisco Bay, CA. Dissolved metal isotope additions were made so that the isotope ratios (rather than total metal partitioning) were significantly altered from initial ambient conditions. Dissolved metal concentrations were determined using an organic ligand sequential extraction technique followed by analysis with high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Exchangeable particulate concentrations were extracted using a 20% acetic acid leach followed by determination using HR-ICPMS. Equilibrium and kinetic sorption parameters were quantified according to a general model for trace metal partitioning assuming pseudo-first-order kinetics. Partition coefficients (KD) were tracked as a function of time over the fortnight experiment. For Ni, Cu, and Zn the initial ambient KD values were found to be 103.65, 103.88, and 104.52 L kg−1, respectively. As a result of the dissolved metal isotope additions, the partition coefficients for all three metals dropped and then increased back to near ambient KD values after 14 days. Curve-fitting concentration versus time profiles from both dissolved and exchangeable particulate data sets allowed determination of kinetic rate constants. The best estimates of forward and backward kinetic rate constants for Ni, Cu, and Zn respectively are k′f = 0.03, 0.07, 0.12 d−1 and kb = 0.13, 0.12, 0.15 d−1. These results predict that sorption equilibria in South Bay should be reached on the order of a month for Ni, on the order of 3 weeks for Cu, and on the order of 2 weeks for Zn. Together, the dissolved and exchangeable particulate data indicate more sluggish sorption kinetics for Ni than for Cu and Zn and suggest that different chemical forms control the speciation of these three metals in South Bay. Order of magnitude metal sorption exchange rates were estimated using these kinetic results. These calculations indicate that sorption exchange between dissolved and suspended particulate phases can cause dynamic internal cycling of these metals in South San Francisco Bay.  相似文献   

8.
《Applied Geochemistry》2005,20(5):989-1016
Groundwater from the Quaternary loess aquifer of La Pampa, central Argentina, has significant problems with high concentrations of As (up to 5300 μg L−1) as well as other potentially toxic trace elements such as F, B, Mo, U, Se and V. Total As concentrations in 45 loess samples collected from the aquifer have a range of 3–18 mg kg−1 with a mean of 8 mg kg−1. These values are comparable to world-average sediment As concentrations. Five samples of rhyolitic ash from the area have As concentrations of 7–12 mg kg−1. Chemical analysis included loess sediments and extracted porewaters from two specially cored boreholes. Results reveal a large range of porewater As concentrations, being generally higher in the horizons with highest sediment As concentrations. The displaced porewaters have As concentrations ranging up to 7500 μg L−1 as well as exceptionally high concentrations of some other oxyanion species, including V up to 12 mg L−1. The highest concentrations are found in a borehole located in a topographic depression, which is a zone of likely groundwater discharge and enhanced residence time. Comparison of sediment and porewater data does not reveal unequivocally the sources of the As, but selective extract data (acid-ammonium oxalate and hydroxylamine hydrochloride) suggest that much of the As (and V) is associated with Fe oxides. Primary oxides such as magnetite and ilmenite may be partial sources but given the weathered nature of many of the sediments, secondary oxide minerals are probably more important. Extract compositions also suggest that Mn oxide may be an As source. The groundwaters of the region are oxidising, with dissolved O2, NO3 and SO4 normally present and As(V) usually the dominant dissolved As species. Under such conditions, the solubility of Fe and Mn oxides is low and As mobilisation is strongly controlled by sorption–desorption reactions. Desorption may be facilitated by the relatively high-pH conditions of the groundwaters in the region (7.0–8.8) and high concentrations of potential competitors (e.g. V, P, HCO3). PHREEQC modelling suggests that the presence of V at the concentrations observed in the Pampean porewaters can suppress the sorption of As to hydrous Fe(III) oxide (HFO) by up to an order of magnitude. Bicarbonate had a comparatively small competitive effect. Oxalate extract concentrations have been used to provide an upper estimate of the amount of labile As in the sediments. A near-linear correlation between oxalate-extractable and porewater As in one of the cored boreholes investigated has been used to estimate an approximate Kd value for the sediments of 0.94 L kg−1. This low value indicates that the sediments have an unusually low affinity for As.  相似文献   

9.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

10.
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25–33 m) and deep (191–318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl. Use of chemical fertilizers may cause higher concentrations of NH4+ and PO43− in shallow well samples. In general, most ions are positively correlated with Cl, with Na+ showing an especially strong correlation with Cl, indicating that these ions are derived from the same source of saline waters. The relationship between Cl/HCO3 ratios and Cl also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO3 reflect the degree of water–rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO42− and NO3 and high concentrations of dissolved Fe and PO43− and NH4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO42− and NO3 but correlate weakly with Mo, Fe concentrations and positively with those of P, PO43− and NH4+ ions.  相似文献   

11.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

12.
《Applied Geochemistry》2003,18(5):693-710
In experiments of 7 days duration using voltammetric and radiotracer measurement techniques, the role of different particle types in the sorption of dissolved metal species in a disturbed deep-sea bottom seawater system were investigated. Resuspension of oxic to suboxic surface sediment into the bottom water in the deep sea (either by natural events or industrial activities like Mn nodule mining) has been shown to be followed quickly by scavenging of dissolved heavy metals, e.g. released from interstitial water, on the resuspended particles. Compared to other deep-sea particles (like clay minerals, calcite and apatite), Mn and Fe oxides and oxyhydroxides were found to be by far the most important phases in scavenging many dissolved heavy metals. Only Pb was sorbed strongly on all particles used, with highest affinity to carbonate fluorapatite. Caesium+ was significantly scavenged only by clay minerals like illite. The sorption experiments support a simple electrostatic model: Hydrated cations and labile cationic chloro-complexes in seawater like Mn2+, MnCl+, Co2+, Ni2+, Cu2+, Zn2+, Ba2+, and PbCl+, are preferentially adsorbed or ion-exchanged on the negatively charged surfaces of Mn oxides. In contrast, oxyanions and neutrally or negatively charged complexes like HVO42−, MoO42−, HAsO42−, UO2(CO3)22−, and PbCO30 associate with neutral to slightly positive amphoteric Fe oxyhydroxide particles. Metals forming strong chloro-complexes in seawater like Cd (CdCl20), are less readily sorbed by oxides than others. A comparison of the results of voltammetric and radiotracer techniques revealed that after fast sorption within the first hour, isotopic exchange dominated reactions on MnO2-rich particles in the following days. This was especially pronounced for Mn and Co which are bound to the Mn oxide surface via a redox transformation.  相似文献   

13.
广西红水河中下游马山地区地下水重金属含量及分布特征   总被引:2,自引:2,他引:0  
为了解红水河中下游马山地区地下水重金属含量及分布特征,以西南岩溶地下水污染调查评价中广西红水河中下游马山地区地下水数据为基础,对该地区27件样品的重金属含量特征、重金属间相关关系、重金属与其它化学组分的相关性以及地下水重金属分布特征进行了研究。结果表明:研究区地下水中重金属含量整体偏低,平均质量浓度顺序为Fe>(Al)>Zn>Mn>Pb>Se>As>Cd,重金属平均质量浓度均小于中国生活饮用水标准值,且绝大部分重金属含量远远低于该标准值。Mn与Fe、As、Al存在显著或极显著的正相关关系,Zn与Pb、Cd存在明显的相关性,Se与其它7种重金属的相关性均不明显,可能是由于Se与其它重金属的来源差异较大所致。地下水的酸碱性对重金属的富集影响较小,但地下水中主化学成分HCO3-和Ca2+对重金属的富集有较大影响,TDS对绝大部分重金属的影响较小,对As和Cd具有一定的影响。地下水中Mn、Zn、As、Pb、Cd、Se、Al、Fe质量浓度在空间上表现出一定的地区分布特点,整体上重金属高浓度点主要集中在马山县城周围以及古寨、乔利街乡镇周围。   相似文献   

14.
Hazaribagh is a densely populated area of Dhaka city where about 185 leather processing industries have been operating and discharging solid and liquid wastes directly to the low-lying areas, river and natural canals without proper treatment. The area is covered by alluvial deposits of Holocene age and is underlain by Pleistocene Madhupur clay. The Dupi Tila Formation of Mio-Pliocene age underlain by this yellowish gray to brick red clay bed serves as the main water-bearing aquifer of Dhaka city. To assess the environmental degradation as well as the groundwater environment, major anions, cations and heavy metals of water samples, heavy metals and organic carbon content of sediment samples were analyzed in this study. Analyses of tannery effluent detect high concentration of Na+, Mg2+, Cl and SO 4 2− followed by Ca2+, NH 4 + and K+ with remarkable contents of some trace elements, mainly Cr, Fe, Mn, S, Ni and Pb. Higher accumulations of Cr, Al and Fe are observed in topsoil samples with significant amounts of Mn, Zn, Ni and Cu. Concentrations of ions and all the investigated trace elements of sampled groundwater were within the maximum allowable limit for drinking water of the Department of Environment, Bangladesh (DoE), and World Health Organization (WHO). However, excessive concentrations of Cr, Pb, etc., have already been reported in the shallow groundwater (10–20 m) of the area. Due to excessive withdrawal the vulnerability of groundwater contamination in deeper parts cannot be avoided for the future.  相似文献   

15.
16.
Concentrations of Al, Mn, Fe, Ag, and Pb in dissolved and particulate phases of the surface water were determined at 15 stations along the coastline off western Taiwan in April of 2007. This study presents the first set of data for Al, Ag, and Pb in the nearshore waters. Latitudinal distribution of these metals showed that high values were present in the regions affected by high fluvial discharge from the Dan-Sui River and the Cho-Sui River. Using the particle fluxes from 210Po/210Pb disequilibria, the removal fluxes and the residence times of the trace metals were calculated. Based on the K d values, the sequence of particle affinity of trace metals, Fe ~ Al >> Pb > Mn > Ag, was found. The correlation of the residence times and of the partitioning coefficients of multiple metals in the nearshore waters implies that the affinities to the particles determine the geochemical cycling of metals in the coastal water.  相似文献   

17.
The study area is very important in terms of anthropogenic activity like rapid industrial, urban development, pesticides, pharmacy, granite polishing and agro based industries. Soils represent an excellent media to monitor heavy metal pollution. The results of soil samples analyzed in the present work using XRF reveal anomalous heavy metal and major oxide concentrations. The geogenic and anthropogenic activities for a long period in the study area are responsible for the anomalous heavy metal pollutants. Hence, this work is of immense societal benefit in terms of prevailing human health hazards in the study area with a direct relevance to such industrially populated regions elsewhere. Soil samples collected from study area were analyzed for heavy metals (As, Ba, Cr, Cu, Ni, Co, Mo, Pb, Rb, Sr, V, Y, Zn and Zr and major oxides (SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, TiO2, and P2O5 ) using Philips PW 2440 X-ray Fluorescence Spectrometer (XRF). The minimum 0.08 for molybdenum and maximum 21.99 enrichment factor for arsenic is observed. The minimum -2.5 and maximum 17.97 geoaccumulation index values is observed for barium and molybdenum. The minimum 0.07 and maximum 4.3 contamination factors is observed for molybdenum and lead. High contamination degree 19.21 for SMP-1 and least 7.8 for SMP-12 is observed. The minimum 0.41 and maximum 0.95 pollution load index is observed for SMP-12 and SMP-20. Factor analysis results shows that, three factors emerged as significant contributors to the soil quality is about seventy six percent for heavy metals and sixty eight percent for major oxides. The spatial variation maps deciphering heavy metal concentration of both natural and anthropogenic origin by three zones i.e. low, moderate and high of the study area based on environment using Arc-GIS.  相似文献   

18.
Correlations between trace metals in dissolved and particulate phases, B. bayad and sediments were investigated in five selected sites along Taylor Creek, which lies between longitude 006°17I to 006°21I E and latitude 05°01I to 05°05I N. The degree of correlation between the various metals was different in each of the investigated segments. Between segments, not many significant correlations were recognized. Only Ni and Cd, Mn and Cd, Mn and Ni, and Mn and Pb are correlated in the sediments and in the particulate phase, Fe and Cr, Pb and Cd, and Zn and Ni are correlated, which suggests that the sources are not common for both compartments. Partitioning coefficients (Kd) of trace metals between dissolved and particulate phases are generally low, which is typical for fresh water ecosystems and fairly stable over Taylor Creek all through the seasons. Furthermore, the bio-concentration factors (BCF) of B. bayad were low unlike those of other natural waters. Cluster analysis showed that metal accumulation in the particulate phase differed from those observed in sediments, which also confirms that the pollution of the Creek might be from different sources.  相似文献   

19.
Iron isotopes were used to investigate iron transformation processes during an in situ field experiment for removal of dissolved Fe from reduced groundwater. This experiment provided a unique setting for exploring Fe isotope fractionation in a natural system. Oxygen-containing water was injected at a test well into an aquifer containing Fe(II)-rich reduced water, leading to oxidation of Fe(II) and precipitation of Fe(III)(hydr)oxides. Subsequently, groundwater was extracted from the same well over a time period much longer than the injection time. Since the surrounding water is rich in Fe(II), the Fe(II) concentration in the extracted water increased over time. The increase was strongly retarded in comparison to a conservative tracer added to the injected solution, indicating that adsorption of Fe(II) onto the newly formed Fe(III)(hydr)oxides occurred. A series of injection-extraction (push-pull) cycles were performed at the same well. The δ57Fe/54Fe of pre-experiment background groundwater (−0.57 ± 0.17 ‰) was lighter than the sediment leach of Fe(III) (−0.24 ± 0.08 ‰), probably due to slight fractionation (only ∼0.3 ‰) during microbial mediated reductive dissolution of Fe(III)(hydr)oxides present in the aquifer. During the experiment, Fe(II) was adsorbed from native groundwater drawn into the oxidized zone and onto Fe(III)(hydr)oxides producing a very light groundwater component with δ57Fe/54Fe as low as −4 ‰, indicating that heavier Fe(II) is preferentially adsorbed to the newly formed Fe(III)(hydr)oxides surfaces. Iron concentrations increased with time of extraction, and δ57Fe/54Fe linearly correlated with Fe concentrations (R2 = 0.95). This pattern was reproducible over five individual cycles, indicating that the same process occurs during repeated injection/extraction cycles. We present a reactive transport model to explain the observed abiotic fractionation due to adsorption of Fe(II) on Fe(III)(hydr)oxides. The fractionation is probably caused by isotopic differences in the equilibrium sorption constants of the various isotopes (Kads) and not by sorption kinetics. A fractionation factor α57/54 of 1.001 fits the observed fractionation.  相似文献   

20.
Environmental geochemistry of high arsenic groundwater at Hetao plain was studied on the basis of geochemical survey of the groundwater and a core sediment. Arsenic concentration in groundwater samples varies from 76 to 1093 μg/L. The high arsenic groundwater mostly appears to be weakly alkaline. The concentrations of NO3 and SO42− are relatively low, while the concentrations of DOC, NH4+, dissolved Fe and sulfide are relatively great. Analysis of arsenic speciation in 21 samples shows that arsenic is present in the solution predominantly as As(III), while particulate arsenic constitutes about 10% of the total arsenic. Methane is detected in five samples with the greatest content being 5107 μg/L. The shallow aquifer in Hangjinhouqi of western Hetao plain is of strongly reducing condition. The arsenic content in 23 core sediment samples varies from 7.7 to 34.6 mg/kg, with great value in clay and mild clay layer. The obvious positive relationship in content between Fe2O3, Mn, Sb, B, V and As indicates that the distribution of arsenic in the sediments may be related to Fe and Mn oxides, and the mobilization of Sb, B and V may be affected by similar geochemical processes as that of As.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号