首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
Magnetic reconnection is considered to be the fundamental process by which magnetic energy is converted into plasma or particle kinetic energy. Magnetic reconnection is a widely applied physics model to explain the solar eruption events, such as coronal bright points(CBPs). Meanwhile, it is an usual way of the solar physics research to look for the observational evidences of magnetic reconnection in the solar eruption events in order to support the model. In this paper, we have explored the evidences of magnetic reconnection in a CBP observed by the Atmospheric Imaging Assembly(AIA) onboard the Solar Dynamics Observatory(SDO) at NOAA No. 11163 on 2011 March 5. Our observations show that this event is a small-scale loop system in active regions that have similar size as a traditional CBP and it might shed light on the physics of a traditional CBP. This CBP is bright in all nine AIA wavelengths and displays a flaring development with three bursts intermittently. Each burst exhibits a pair of bi-directional jets almost along a line. They originate from the same position(CBP core), then move in the opposite directions. Our findings are well consistent with the magnetic reconnection process by which the bi-directional plasma outflows are produced and radiate the bi-directional jets detected by SDO/AIA. These facts further support the conclusion that the CBP is produced by the magnetic reconnection process.  相似文献   

2.
We perform the detailed imaging and spectroscopic analysis of two coronal bright points (CBPs). These CBPs are dominated by bright dots or elongated bright features. Their rapid temporal variations lead to a continuous change in their overall morphology at chromospheric and transition-region (TR) temperatures. A 3D potential magnetic field extrapolation predicts the dominance of magnetic loops in the extent of both CBPs, which are clearly visible at the Si iv 1393.75 Å line formation temperature. Short, low-lying magnetic loops or loop segments are the integral parts of these CBPs at TR temperature. A correlation between the various parameters of Mg ii resonance lines (e.g. intensity, Doppler velocity, velocity gradient) is present in the region of magnetic loops or loop segments. However, a quiet-Sun (QS) region does not show any correlation. Doppler velocities as well as the full width at half maximum (FWHM) of these lines are very prominent in the magnetic loops and loop segments compared to the Doppler velocities and FWHM in the QS region. Higher red-shifts and FWHM at TR temperatures are directly related to the dominance of the energy release process in these regions in the framework of the nanoflare model. A magnetogram from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) reveals the existence of two opposite magnetic polarities in the extent of both CBPs, which is a very well established result. We find that one CBP is formed by the convergence of two opposite magnetic polarities, while the other is triggered by the emergence of a new magnetic field prior to the onset of this CBP.  相似文献   

3.
Our investigation has been carried using the instruments onboard the Solar Dynamics Observatory (SDO) providing a high resolution of images (AIA photographs and HMI magnetograms). We have investigated the structure and magnetic evolution of several coronal bright points and small scale N-S polarity magnetic fluxes closely associated with them. We also compare the evolution of the magnetic polarities of elementary isolated sources of positive and negative fluxes (magnetic bipoles) and coronal bright points. Tiny (“elementary”) coronal bright points have been detected. A standard coronal bright point is shown to be a group of “elementary” coronal bright points that flare up sequentially. Our investigation shows that a change in the magnetic fluxes of opposite polarities is observed before the flare of a coronal bright point. We show that not all cases of the formation of coronal bright points are described by the magnetic reconnection model. This result has not been considered previously and has not been pointed out by other authors.  相似文献   

4.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

5.
Based on two-dimensional solar images obtained with the Siberian Solar Radio Telescope and the Nobeyama Radio Heliograph and using YOHKOH soft X-ray images, we investigate bright coronal points. The principal microwave emission mechanism of these points is shown to be the thermal bremsstrahlung of an optically thin plasma. The fact that, in several cases, bright coronal points do not coincide at two wavelengths can be explained by imaging peculiarities of the Nobeyama Radio Heliograph rather than by physical factors.  相似文献   

6.
Since their discovery 20 year ago, transition region bright points have never been observed spectroscopically. Bright point properties have not been compared with similar transition region and coronal structures. In this work we have investigated three transient quiet Sun brightenings including a transition region bright point (TR BP), a coronal bright point (CBP) and a blinker. We use time-series observations of the extreme-ultraviolet emission lines of a wide range of temperature T (logT=5.3?–?6.4) from the EUV Imaging Spectrometer (EIS) onboard the Hinode satellite. We present the EIS temperature maps and Doppler maps, which are compared with magnetograms from the Michelson Doppler Imager (MDI) onboard the SOHO satellite. Doppler velocities of the TR BP and blinker are ≤?25 km?s?1, which is typical of transient TR phenomena. The Doppler velocities of the CBP were found to be ≤?20 km?s?1 with exception of those measured at logT=6.2 where a distinct bi-directional jet is observed. From an EM loci analysis we find evidence of single and double isothermal components in the TR BP and CBP, respectively. TR BP and CBP loci curves are characterized by broad distributions suggesting the existence of unresolved structure. By comparing and contrasting the physical characteristics of the events we find that the BP phenomena are an indication of multi-scaled self-similarity, given the similarities in both their underlying magnetic field configuration and evolution in relation to EUV flux changes. In contrast, the blinker phenomena and the TR BP are sufficiently dissimilar in their observed properties as to constitute different event classes. Our work is an indication that the measurement of similar characteristics across multiple event types holds class-predictive power, and is a significant step towards automated solar atmospheric multi-class classification of unresolved transient EUV sources. Finally, the analysis performed here establishes a connection between solar quiet region CBPs and jets.  相似文献   

7.
Coronal holes are regions of dominantly monopolar magnetic field on the Sun where the field is considered to be ‘open’ towards interplanetary space. Magnetic bipoles emerging in proximity to a coronal hole boundary naturally interact with this surrounding open magnetic field. In the case of oppositely aligned polarities between the active region and the coronal hole, we expect interchange reconnection to take place, driven by the coronal expansion of the emerging bipole as well as occasional eruptive events. Using SOHO/EIT and SOHO/MDI data, we present observational evidence of such interchange reconnection by studying AR 10869 which emerged close to a coronal hole. We find closed loops forming between the active region and the coronal hole leading to the retreat of the hole. At the same time, on the far side of the active region, we see dimming of the corona which we interpret as a signature of field line ‘opening’ there, as a consequence of a topological displacement of the ‘open’ field lines of the coronal hole. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X-ray. The Ha and EUV images indicate that the CME started with the eruption of a long filament located near the solar northwest limb. The white light coronal images show that the CME initiated with the rarefaction of a region above the solar limb and followed by the formation of a bright arcade at the boundary of the rarefying region at height 0.46 R(?) above the solar surface. The rarefying process synchronized with the slow rising phase of the eruptive filament, and the CME leading edge was observed to form as the latter started to accelerate. The lower part of the filament brightened in Ha as the filament rose to a certain height and parts of the filament was visible in the GOES X-ray images during the rise. These brightenings imply that the filament may be heated by the magnetic reconnection below the filament in the early stage of the eruption. We suggest that a possible mechanism which leads to the formation of the CME leading edge and cavity is the magnetic reconnection which takes place below the filament after the filament has reached a certain height.  相似文献   

10.
We analyze the electric fields that arise at the footpoints of a coronal magnetic loop from the interaction between a convective flow of partially ionized plasma and the magnetic field of the loop. Such a situation can take place when the loop footpoints are at the nodes of several supergranulation cells. In this case, the neutral component of the converging convective flows entrain electrons and ions in different ways, because these are magnetized differently. As a result, a charge-separating electric field emerges at the loop footpoints, which can efficiently accelerate particles inside the magnetic loop under appropriate conditions. We consider two acceleration regimes: impulsive (as applied to simple loop flares) and pulsating (as applied to solar and stellar radio pulsations). We have calculated the fluxes of accelerated electrons and their characteristic energies. We discuss the role of the return current when dense beams of accelerated particles are injected into the corona. The results obtained are considered in light of the currently available data on the corpuscular radiation from solar flares.  相似文献   

11.
Hinode is an observatory‐style satellite, carrying three advanced instruments being designed and built to work together to explore the physical coupling between the photosphere and the upper layers for understanding the mechanism of dynam‐ ics and heating. The three instruments aboard are the Solar Optical Telescope (SOT), which can provide high‐precision photometric and polarimetric data of the lower atmosphere in the visible light (388–668 nm) with a spatial resolution of 0.2–0.3 arcseconds, the X‐Ray Telescope (XRT) which takes a wide field of full sun coverage X‐ray images being capable of diagnosing the physical condition of coronal plasmas, and the EUV Imaging Spectrometer (EIS) which observes the upper transition region and coronal emission lines in the wavelength ranges of 17–21 nm and 25–29 nm. Since first‐light observations in the end of October 2006, Hinode has been continuously providing unprecedented high‐quality solar data. We will present some new findings of the sun with Hinode, focusing on those from SOT (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A New Method of Identifying 3D Null Points in Solar Vector Magnetic Fields   总被引:7,自引:0,他引:7  
Employing the Poincare index of isolated null-points in a vector field, we worked out a mathematical method of searching for 3D null-points in coronal magnetic fields. After introducing the relevant differential topology, we test the method by using the analytical model of Brown & Priest. The location of null-point identified by our method coincides precisely with the analytical solution. Finally we apply the method to the 3D coronal magnetic fields reconstructed from an observed MDI magnetogram of a super-active region (NOAA 10488). We find that the 3D null-point seems to be a key element in the magnetic topology associated with flare occurrence.  相似文献   

13.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   

14.
Magnetohydrodynamic (MHD) waves in solar coronal loops, which were previously only predicted by theory have actually been detected with space‐borne instruments. These observations have given an important and novel tool to measure fundamental parameters in the magnetically embedded solar corona. This paper will illustrate how information about the magnetic and density structure along coronal loops can be determined by measuring the frequency or amplitude profiles of standing fast kink mode oscillations. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Solar coronal mass ejections (CMEs) show a large variety in their kinematic properties. CMEs originating in active regions and accompanied by strong flares are usually faster and accelerated more impulsively than CMEs associated with filament eruptions outside active regions and weak flares. It has been proposed more than two decades ago that there are two separate types of CMEs, fast (impulsive) CMEs and slow (gradual) CMEs. However, this concept may not be valid, since the large data sets acquired in recent years do not show two distinct peaks in the CME velocity distribution and reveal that both fast and slow CMEs can be accompanied by both weak and strong flares. We present numerical simulations which confirm our earlier analytical result that a flux‐rope CME model permits describing fast and slow CMEs in a unified manner. We consider a force‐free coronal magnetic flux rope embedded in the potential field of model bipolar and quadrupolar active regions. The eruption is driven by the torus instability which occurs if the field overlying the flux rope decreases sufficiently rapidly with height. The acceleration profile depends on the steepness of this field decrease, corresponding to fast CMEs for rapid decrease, as is typical of active regions, and to slow CMEs for gentle decrease, as is typical of the quiet Sun. Complex (quadrupolar) active regions lead to the fastest CMEs. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Two-dimensional numerical magnetohydrodynamic simulations of a cancelling magnetic feature (CMF) and the associated coronal X-ray bright point (XBP) are presented. Coronal magnetic reconnection is found to produce the Ohmic heating required for a coronal XBP. During the BP phase where reconnection occurs above the base, about 90–95 per cent of the magnetic flux of the converging magnetic bipole cancels at the base. The last ≈5 to 10 per cent of the base magnetic flux is cancelled when reconnection occurs at the base. Reconnection happens in a time-dependent way in response to the imposed converging footpoint motions. A potential field model gives a good first approximation to the qualitative behaviour of the system, but the magnetohydrodynamics (MHD) experiments reveal several quantitative differences: for example, the effects of plasma inertia and a pressure build-up in-between the converging bipole are to delay the onset of coronal reconnection above the base and to lower the maximum X -point height.  相似文献   

17.
We present two-dimensional numerical magnetohydrodynamics simulations of a coronal X-ray bright point (XBP) caused by a cancelling magnetic feature (CMF). Cancellation is driven by converging motions of two magnetic bipolar sources. These sources are initially disconnected from each other so that both, the CMF and the associated reconnection/heating event (i.e. the XBP), are modelled in a self-consistent way. In the initial state, there is no X-point but two separatrices are present. Hence, the reconnection/heating and the cancellation phases have not yet started. Our numerical experiments end shortly after the converging magnetic bipole has fully cancelled. By this time, reconnection in the inner domain has ceased and occurs only at the base. Solving the energy equation with various heating and cooling terms included, and considering different bottom boundary conditions, reveals that the unrealistically high temperatures produced by Ohmic heating are reduced to more moderate temperatures of 1.5–2 MK consistent with observations of XBPs, if thermal conduction is included and density and temperature are fixed at the base.  相似文献   

18.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

19.
This paper examines the way that transition region surface waves, generated in 2‐D numerical simulations of the nonmagnetic solar atmosphere when various synthetic photospheric drivers are applied, drive the granulation of the transition region/lower coronal region into convection cells. It is shown that these cells are generated by both synthetic point drivers and synthetic horizontally coherent p‐mode drivers. These cells cause the conversion of driven signals in vertical velocity into coronal signals predominantly in horizontal velocity, which if carried over to a case with a magnetic field included could cause mode conversion. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
X-ray bright surges   总被引:1,自引:0,他引:1  
We present evidence of X-ray emission from surges that are bright in H. These surges have many features common to flaring arches of Martin and vestka (1988); the basic difference between the two is that in flaring arches cold and hot plasma are injected into clearly defined closed magnetic loops, while in the surges the injection goes into large-scale magnetic field structures of which the second footpoint is usually unknown. Because of the steep density gradient in such large-scale structures, the X-ray visibility of bright surges is limited to a few tens of seconds only. A series of repetitive surges, some of them bright and emitting X-rays, occurred on 8 July, 1980 from footpoints of two large-scale coronal structures, which might have been the legs of an enormous arch at least 600 Mm long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号